CopepxaHue

20 ROUR BT ..ottt e oo oo e oo r e e et et e e e e e e e e et ettt et e e e e e e e e s e
GeNeEral DESCIIPLIONooooii e a e e e e e e e e e e e e eeeraaaaaraae
The Internal RoUter ArChiteCLUIEooio i
System ReqQUIreMENTSooooiiiiiiiiiii et
Setting veth-nterface Namesccccooiiiiiiiiiii i
TAP Subnets Configuration ...t
Creating Veth interfacescooii i

L Y G 7 o T o T o P

20 Router

This is a provisional description, and may be substantially modified in the future based
on test results

The router only works with the CentOS-8 version of Stingray Service Gateway, and
only in L2 BRAS mode

<html><div class="menu"></html>

General Description

SSG itself does not build the routing table. It delegates this work to proven specialised tools. The
example uses the BIRD root daemon. The router daemon processes the required routing protocols
(BGP, OSPF, etc.) and uses them to build a common routing table which it loads into the kernel. SSG
performs routing of packets using this table.

bird net namespace
fastDPI BIRD
dpi41-00.0 | | | ribd1-00.0

‘ - veth interfaces ' ‘
e\ dpidl-001 | »| [1D41-00.1

41-00.1 |- > TAP = | 10.0.0.4/24
Route lahle‘ Route table

'Y

A

netlink netlink

Linux kernel
route table 1

\ I) Instead of BIRD, any other daemon that builds a routing table in the Linux kernel can

https://wiki.vasexperts.ru/lib/exe/detail.php?id=en%3Adpi%3Adpi_options%3Arouter%3Astart&media=dpi:dpi_options:router:schemata.png
https://wiki.vasexperts.ru/lib/exe/detail.php?id=en%3Adpi%3Adpi_options%3Arouter%3Astart&media=dpi:dpi_options:router:schemata.png
https://wiki.vasexperts.ru/lib/exe/detail.php?id=en%3Adpi%3Adpi_options%3Arouter%3Astart&media=dpi:dpi_options:router:schemata.png
https://wiki.vasexperts.ru/lib/exe/detail.php?id=en%3Adpi%3Adpi_options%3Arouter%3Astart&media=dpi:dpi_options:router:schemata.png

be used, such as FRRouting, QUAGGA, Juniper CRPD, etc. since Stingray Service

Gateway only uses the standard Linux interface to read the routing table and is

i therefore compatible with any daemon. In future versions, in order to save memory, it

'\J) is possible to introduce optional specialized APIs for communication with a particular

daemon to bypass kernel route table construction and communicate with the daemon
directly.

Since BIRD builds the routing table in the OS kernel, to avoid application of these rules by the Linux
server itself, the BIRD root daemon runs in a separate net namespace (in the diagram it is bird
netns). Routing protocol packets are received by SSG in/out devices in general traffic. For each in/out
device, a veth pair of "shadow" interfaces with predefined names is created: the DPI interface of the
veth pair works as a TAP interface, the rib interface works as a normal system interface in BIRD's
netns.

The Internal Router Architecture

Data from the kernel route table is read (rtnetlink) in the router's RIB. RIB is a prefix tree, it is
convenient to modify it by kernel route table change events (delete/add entries). But it is impossible
to use RIB in routing because it does not support multithreaded access from work threads (it requires
locking, which is unacceptable).Therefore, in SSG, RIB is in router thread and unavailable for worker
threads.

The worker threads use FIB. This structure is designed for multi-threaded search (LPM - longest prefix
match), but is not designed for modifications (deletion/addition of new records). FIB can only be built
from scratch by RIB and then used for LPM. Therefore, there are two FIBs in SSG - the current one
(which is currently used for routing by worker threads) and the 'future one'. SSG checks every

router fib refresh seconds to see if there have been any changes to the RIB since the current
FIB was built. If there were changes, SSG builds (in router thread) new FIB in place of "future" one,
and then switches current FIB to new one. By doing this, the worker threads will meet any changes
that have occurred in the routing table.

System Requirements

Router mode in SSG requires quite a lot of memory, especially with BGP full view. Plus, memory is
required for the BIRD daemon that builds the routing table via BGP, OSPF, etc. Router mode
(especially BGP full view) requires at least 4-8G additional memory.

Setting veth-nterface Names

The fastdpi.conf describes all TAP-interfaces associated with the devices:

Description of one router interface
WARNING! '{' must be on the same line as the router device section name!
router device {

Device name from in dev/out dev

https://frrouting.org/
https://www.quagga.net
https://www.juniper.net/documentation/product/en_US/crpd

device=
TAP interface name for the device (default='dpi' + device)
#tap=
Name of the paired TAP interface in netns for the device
(default='rib' + device)
#peer=
WARNING! '}' must be on a separate line!
}

For example, for this configuration

in dev=41-00.0
out dev=41-00.1

where only out dev is connected to the router, the description would be:

in dev=41-00.0
out dev=41-00.1

router device {
Device name from in dev/out dev
device=41-00.1
TAP interface name for the device (default='dpi' + device)
tap=tap41l
Name of the paired TAP interface in netns for the device
(default='rib"' + device)
peer=bgp41l
}

It is possible not to specify the names of the tap and peer interfaces (default names are implied in
this case), but the router _device should be described:

in dev=41-00.0
out dev=41-00.1
TAP for out dev:
router device {
device=41-00.1
}

TAP for in dev
router device {
device=41-00.0
}

In this case the TAP interface names are assumed to be as follows:

e for in dev=41-00.0: dpi41-00.0 on the SSG side, rib41-00.0 on the BIRD side
e for out dev=41-00.1: dpi41-00.1 on the SSG side, rib41-00.1 on the BIRD side

TAP Subnets Configuration

For each router device it is mandatory to specify which subnets are allocated to the TAP (in fact,
this is an allocation of routing protocol packets to the BIRD). SSG will allocate calls to these subnets
from the general traffic on the device and route all such packets to the appropriate TAP interface.

Subnets are defined by the subnet (for IPv4) and subnet6 (for IPv6) parameters in the
router_device description. Each subnet is defined with a separate subnet/subnet6 parameter.
You can have up to 16 different subnet parameters and up to 16 different subnet6 parameters in
the router_device description. For example, the following configuration

router device {
Device name from in dev/out dev
device=41-00.1
TAP interface name for the device (default='dpi' + device)
tap=tap4l
Name of the paired TAP interface in netns for the device
(default='rib' + device)
peer=bgp4l

Which IPv4 subnets to allocate to TAP
subnet=10.0.2.0/30
subnet=8.8.8.0/29

Which IPv6 subnets to allocate to TAP
subnet6=2001::1/124
link-local the address of the interface with which bird
communicates
subnet6=fe80::82d:cff:fe5f:9453/128
}

specifies two IPv4 subnets for device 41-00.1 to be allocated to the TAP interface tap41, and one
IPv6 subnet plus the link-local address of the interface with which bird communicates.

If IPv6 is used, note that link-local addresses play a major role in IPv6, which should
also be specified in the subnet6 parameters

OSPF uses the multicast addresses 224.0.0.5 and 224.0.0.6, so if the router _device uses OSPF,
these addresses should also be specified in the router device description:

router device {
device=41-00.1
tap=tap4l
peer=bgp41l

OSPF multicast
subnet=224.0.0.5/32
subnet=224.0.0.6/32

LO] At least one IPv4 or IPv6 subnet must be specified in the router device parameter

Creating veth interfaces

Everything described in this section - creating veth interfaces, running BIRD, etc. -
should be set in the system boot scripts and run before fastdpi is started.

Suppose we have the following devices specified in fastdpi.conf:

in dev=41-00.0
out dev=41-00.1

Suppose we need to configure the BGP protocol for uplink in BIRD, i.e. on the 41-00. 1 device.

Shadow veth interfaces must be created for each in/out device whose traffic includes
(routing protocol packets, i.e. which require configuration in BIRD. If the device is not
b involved in routing (like in_dev=41-00.0 in this example), no veth pair needs to be
created for it.

To redirect BGP traffic from 41-00. 1 to BIRD, which runs on bird netns, we need to create a veth

shadow pair for the 41-00. 1 interfaces.

Create bird netns (the name bird is arbitrarily chosen here, you may use a different netns name)
which will run BIRD:

ip netns add bird
Create the veth pair:
ip link add dpi4l1-00.1 type veth peer name rib41-00.1 netns bird

The rib interface must have an IP address (and IPv6 if IPv6 is supported). This address will be the BGP
peer address for the BGP neighbour.

ip netns exec bird ip address add 10.0.0.4/24 broadcast 10.0.0.255 dev
rib41-00.1

ip netns exec bird ip address add 2098::4/124 dev rib41-00.1

enable ARP on the interface

ip netns exec bird ip link set dev rib41-00.1 arp on

set tx checksum offload off - turn off checksum calculation on the

interface

noticed that the CRC calculation on the interface may not be correct (at
least on some Cent0S-8 kernel builds)

ip netns exec bird ethtool -K rib41-00.1 tx off

The IP address of the rib interfaces must be different from the SSG IP address given by
the bras arp ip and bras ipv6 address parameters. Furthermore, to avoid
confusion, the bras_arp ip and bras ipv6 address addresses should not be part
of any subnet allocated to the TAP interfaces.

The dpi interface should have neither IPv4 nor IPv6 addresses, as SSG uses it as a TAP interface
and it is not required to have addresses on it (indeed, it may even get in the way if the interface itself
starts emitting packets):

ip link set dev dpi4l-00.1 arp off
Disable IPv6 on dpiXXX interfaces (so that there is not even a link-local
address)

echo 1>/proc/sys/net/ipv6/conf/dpi4l-00.1/disable ipv6
Finally, bring up all created interfaces:

ip link set dpi41-00.1 up
ip netns exec bird ip link set lo up
ip netns exec bird ip link set rib41-00.1 up

Do not forget the firewall:

firewall-cmd --zone=internal --add-source=10.0.0.1/24
firewall-cmd --zone=internal --add-rich-rule='rule family=ipv4 source
address=10.0.0.1/24 accept'

Remember that BIRD must be run in bird netns:

ip netns exec bird /usr/local/sbin/bird

SSG will link down the veth interfaces of that device; as soon as link 41-00.1 is up,

@ The state of the veth interfaces is controlled by SSG: if device 41-00.1 is link down,
SSG will link up the veth interfaces.

What about the VLAN?

SSG sends packets to the rib interfaces "as is" without any conversion. It means that if
you have a VLAN, you have to use Linux to create vlan interfaces on the rib interface
u and bind the bird to those vlan interfaces.

In fastdpi.conf vlan interfaces created on a rib interface must not be listed anywhere -

you must specify the two ends of the veth pair as tap and peer.

MTU
SSG does not set the MTU on the veth interfaces. When configuring the veth
interfaces, the MTU must be set using the standard Linux tools.

LAG Support

SSG 10.1 adds support for link aggregation in the router.

For aggregated channels, packets that need to be diverted to a TAP interface can go to any device
that is part of a LAG. To avoid creating the same TAP interface for each device in a LAG, the router
takes into account which devices are included in the LAG and for all such devices does a diversion of
traffic of the specified subnets to the TAP (to the BIRD daemon).

Each LAG is defined by a separate section in fastdpi.conf which lists all the devices included in the
LAG:

In/out devices, combined in a LAG
in dev=01-00.0:02-00.0
out dev=01-00.1:02-00.1

Describing the LAG towards the inet

lag {
Optional LAG name, used only for log output
name=inet
Each device included in a LAG is described by a separate device
parameter

device=01-00.1
device=02-00.1

Description of one router interface
router device {
Device name from out dev. Only for this device create a veth pair
of TAP interfaces
device=01-00.1
TAP interface name for the device (default='dpi' + device)
tap=tap0
Name of the paired TAP interface in netns for the device
(default='rib' + device)
peer=peer0
Subnets diverted from total traffic to the TAP device (example)
subnet=10.0.10.0/26
#...other subnets...

}

With this description, traffic to TAP "tap0" will be diverted from both "01-00.1" and "02-00.1" devices
specified in the "lag" section, according to the rules (subnets) specified for "01-00.1" in
“router_device".

The lag section must contain at least two devices, and all devices must be of the same direction
(either all facing inet or all facing subs). One device may only be in one LAG (or not in any LAG at all).
If the router works both inet and subs direction (e.g. BGP on the inet side and OSPF inside the
network, subs side), two lag sections are described:

LAG towards inet

lag {
name=inet
device=01-00.1
device=02-00.1
}

LAG towards subs

lag {
name=subs
device=01-00.0
device=02-00.0
}

and a separate router device section is configured for each.

A maximum of 10 different lag sections can be configured in total.

(_ The lag section in fastdpi.conf is a cold parameter, requiring a fastdpi restart when
b the LAG description is changed.

	Содержание
	20 Router
	General Description
	The Internal Router Architecture

	System Requirements
	Setting veth-nterface Names
	TAP Subnets Configuration
	Creating veth interfaces
	LAG Support

