CopepxaHue

G SOTE-ROULEE ...t e e et it e e e e e e e a 3
GeNeEral DESCIIPLIONooooii e a e e e e e e e e e e e e eeeraaaaaraae 3
The Internal Router ArChiteCtUreeiiiiiiiii e 3
VRF General DeSCIIPLIONuiiiiiiiiiiiiiiieeee et e e e e e e e s e e s rreee s 5
VRF Lite in Stingray Service GateWaycooooiiiiiiiiiiiiiiiiie e 5
TAP Subnets Configuration ...t 7
Creating Veth interfacescooii i 9
SSG SEULINGS ... et 11
SSG CoNFIGUIALION ooiuiiiiiiiiie e a e e e 11
Setting veth-Interface NamESc..eeiiiiiii e 16
A R YUT o] oo o SO PR T PP TP TTPTPPP 17
Multi-path routing (ECMP)ooo it a e e nnes 19
Specifics of addresses announcement ... 19
Subscriber announcements and NAT POOL ..o 19
Announcement of L3 subscriber addreSSes ...t 21
Root Daemon Configuration (BIRD, FRR, €tC.)cccc.cccccciiiiiiiiiiiiiiiiiiiiiceeee e 21
BIRD configuration @XampPle ...t 22
Router TroubleSROOtING ..o 25

(o) I oo 1171 1 1= T o Lo KT 26

4 Soft-Router

General Description

Stingray Service Gateway (SSG) itself does not build the routing table. It delegates this work to
proven specialised tools. The example uses the BIRD root daemon. The router daemon processes the
required routing protocols (BGP, OSPF, etc.) and uses them to build a common routing table which it
loads into the kernel. SSG performs routing of packets using this table.

Instead of BIRD, any other daemon that builds a routing table in the Linux kernel can
be used, such as FRRouting, QUAGGA, Juniper CRPD, etc. since Stingray Service
Gateway only uses the standard Linux interface to read the routing table and is
‘P therefore compatible with any daemon.
N

In future versions, in order to save memory, it is possible to introduce optional
specialized APIs for communication with a particular daemon to bypass kernel route
table construction and communicate with the daemon directly.

Since BIRD builds the routing table in the OS kernel, to avoid application of these rules by the Linux
server itself, the BIRD root daemon runs in a separate net namespace (in the diagram it is bird
netns). Routing protocol packets are received by SSG in/out devices in general traffic. For each in/out
device, a veth pair of "shadow" interfaces with predefined names is created: the DPI interface of the
veth pair works as a TAP interface, the rib interface works as a normal system interface in BIRD's
netns.

System requirements are described in the Hardware Requirements and Performance section.

The Internal Router Architecture

https://frrouting.org/
https://www.quagga.net
https://www.juniper.net/documentation/product/en_US/crpd
https://wiki.vasexperts.ru/doku.php?id=en:dpi:dpi_brief:dpi_requirements#system_requirements_for_soft-router

bird net namespace

fastDP BIRD

rib41-00.0

N dpi41-00.0
) tap

41-00.0

10.0.0.2/24

rin41-001

L

10.0.0.4/24

route table route table

Iy - 'y
.

L netlink

J'

.

linux kernel route table 1

netlink [
|

Data from the kernel route table is read (rtnetlink) in the router's RIB. RIB is a prefix tree, it is
convenient to modify it by kernel route table change events (delete/add entries). But it is impossible
to use RIB in routing because it does not support multithreaded access from work threads (it requires
locking, which is unacceptable). Therefore, in SSG, RIB is in router thread and unavailable for worker
threads.

The worker threads use FIB. This structure is designed for multi-threaded search (LPM - longestLPM -
longest prefix match), but is not designed for modifications (deletion/addition of new records). FIB can
only be built from scratch by RIB and then used for LPM. Therefore, there are two FIBs in SSG - the
current one (which is currently used for routing by worker threads) and the 'future one'. SSG checks
every router fib refresh seconds to see if there have been any changes to the RIB since the
current FIB was built. If there were changes, SSG builds (in router thread) new FIB in place of “future”
one, and then switches current FIB to a new one. By doing this, the worker threads will meet any
changes that have occurred in the routing table.

Default values in the Router

router_max_ip4_route_count = 1000000. The maximum number of IPv4 routes for a particular

VRF.

router_max_ip6_route_count = 200000. The maximum number of IPv6 routes for a particular
VRF.

router_multipath_page = 8192. The maximum number of pages for multi-path route
distribution.

router_fib refresh = 15s. FIB update Interval.

router_arp_cache_size = 1024. ARP cache size.

VRF General Description

(SSG implements VRF Lite - it shares routing tables, but does not put individual VRF
b traffic into a unique tunnel (MPLS, VXLAN).

VRF (Virtual Routing and Forwarding instance) — is a routing virtualization mechanism. VRF allows
you to create virtual routers on the same physical device with independent routing tables, interface
lists, and other parameters. This enables virtualized isolated environments and ensures that each VRF
has independent settings and does not share parameters with other VRFs and the physical device.
Communication between different VRFs is possible, but it is strictly local to the device, and the VRF on
one router is not connected in any way to the VRF on another.

Each VRF is a separate VPN and does not interconnect with other VRFs.

An example is the traffic allocation from an IPTV set-top box that is also located in the L2 domain with
BRAS, as well as the CPE (Customer Premises Equipment - network equipment that provides user
access to the ISP's network). The IPTV set-top box only accesses local resources, the CPE accesses the
Internet.

VRF may be called Virtual Routing Instance in Juniper, VRF in Cisco and MikroTik, but they are all
routing virtualization mechanism with similar features.

VRF Lite in Stingray Service Gateway

[

]

F 3
Y

F 3
v

Out
3. Route the packet to the next hop
r 3
BIRD with muiltiple routing protocols
4. Read L2 properties of next hop from general cache tap peer
A

Build ARP cache from ARP responds

<
BNG VRF BNG VRF
3. Find in FIB where to send the packet 1FIB 1RIB
r 3

BNG VRF

Kernel_GRT

Kernel_rt 2

2FIB

2. dst IP check BNG VRF BNG VRF
arne —
A NFIB NRIB

Isolation occurs at FIB level

1. A packel recleved

The prefix Lite means that SSG only separates routing tables, but does not place the traffic of an
individual VRF into a unique tunnel (MPLS, VXLAN). VRF Lite allows isolating the services provided
between each other and optimizing routing when using different links.

VRF Lite is implemented in SSG by using Soft-Router, which builds a RIB table and writes/reads from
the table. SSG diverts traffic to the Linux kernel for the routing daemon. FastDPI provides the FIB
table construction.

The routing daemon runs in isolation to keep the OS from becoming a router. SSG sends all signaling
to the router, the router itself builds routing rules. Then, using these rules, SSG starts forwarding and
routing packets.

The current version (12.3) does not support L3VPN and MPLS, but you can configure special context
routing if necessary.

VREF Lite in SSG is service 254, that may or may not be subscriber-enabled. By default, the subscriber
falls into the VRF which is specified in SSG.

Behavior

Routing in the SSG can be done using the FRR or BIRD routing daemons, which is a separate process
that handles the exchange of dynamic routing signaling protocols (BGP, OSPF). In the context of VRF
Lite, BIRD suits better since the SSG runs on the Linux architecture. When using BIRD, it is possible to

handle route leaking in the routing tables.

This section covers the single namespace and multiple routing tables option, which is more suitable
for the BIRD routing daemon. There is also a concept with multiple namespaces and a single table.
This concept is more typical of FRR.

GRT (Global routing table) in this scheme is a conventional name, it is exactly the same kernel route
table as the others in the scheme. The table is named so for the convenience and complexity of
testing. It uses own routing rules from several routers, they can be multiple or have their own
contexts.

All rules and filters are configured in the router (in this case, BIRD). When BIRD starts, when SSG is
running and BGP neighboring is up, some incoming routes are folded into the Kernel rt N table, others
are folded into GRT and then flow into Kernel_rt 1 and Kernel _rt 2 according to specified rules.

The SSG describes the same VRFs targeting specific tables with routing rules. Each instance reads
from the tables and builds isolated FIBs based on those tables.

The SSG has its own unique ARP cache, which it builds based on responses to ARP requests. An SSG
can have multiple ARP tables, multiple VRFs can have one common table.

Due to isolation, the same subnet can be accessed through different hops and different routers and
routed differently. After the FIB is built, when traffic flows, first the subscriber is authorized and placed
in the required VRF. The FIB can be updated after the subscriber is authorized. The subscriber can be
moved between VRFs dynamically after the subscriber is authorized by CoA.

The Default gateway for this subscriber will also be moved to another VRF and may
become unavailable to other subscribers (who may already be using the network).

Actions when traffic is outgoing from a subscriber:

1. Find which VRF the subscriber belongs to.

. Find the destination of the packet.

3. In the FIB, find which hop is to terminate the packet and terminate it. Relevant only when
creating flow, then nexthop is memorized for flow.

N

Actions on incoming traffic:

1. Analyze dest.
2. Check subscriber status.
3. Test for packet origination.

For other groups of subscribers everything happens similarly in isolation, according to the rules.
Announcement is performed from the VRF on which the subscriber is located.

TAP Subnets Configuration

For each router device it is mandatory to specify which subnets are allocated to the TAP (in fact,
this is an allocation of routing protocol packets to the BIRD). SSG will allocate calls to these subnets

from the general traffic on the device and route all such packets to the appropriate TAP interface.

Subnets are defined by the subnet (for IPv4) and subnet6 (for IPv6) parameters in the

router _device description. Each subnet is defined with a separate subnet/subnet6 parameter.
You can have up to 16 different subnet parameters and up to 16 different subnet6 parameters in
the router_device description. For example, the following configuration specifies two IPv4 subnets for
device 41-00.1 to be allocated to the TAP interface tap41, and one IPv6 subnet plus the link-local
address of the interface with which bird communicates:

router device
Device name from in dev/out dev
device=41-00.1
TAP interface name for the device (default='dpi' + device)
tap=tap4l
Name of the paired TAP interface in netns for the device
(default="'rib' + device)
peer=bgp4l

Which IPv4 subnets to allocate to TAP
subnet=10.0.2.0/30
subnet=8.8.8.0/29

Which IPv6 subnets to allocate to TAP
subnet6=2001::1/124
link-local the address of the interface with which bird
communicates
subnet6=fe80::82d:cff:fe5f:9453/128

If IPv6 is used, note that link-local addresses play a major role in IPv6, which should
also be specified in the subnet6 parameters

OSPF uses the multicast addresses 224.0.0.5 and 224.0.0.6, so if the router _device uses OSPF,
these addresses should also be specified in the router device description:

router device
device=41-00.1
tap=tap4l
peer=bgp4l

OSPF multicast

subnet=224.0.0.5/32
subnet=224.0.0.6/32

Lo At least one IPv4 or IPv6 subnet must be specified in the router device parameter

Creating veth interfaces

Everything described in this section - creating veth interfaces, running BIRD, etc. -
should be set in the system boot scripts and run before fastdpi is started.

Suppose we have the following devices specified in fastdpi.conf:

in dev=41-
out dev=41-

Suppose we need to configure the BGP protocol for uplink in BIRD, i.e. on the 41-00. 1 device.
- Shadow veth interfaces must be created for each infout device whose traffic includes
() routing protocol packets, i.e. which require configuration in BIRD. If the device is not
N

involved in routing (like in _dev=41-00.0 in this example), no veth pair needs to be
created for it.

To redirect BGP traffic from 41-00. 1 to BIRD, which runs on bird netns, we need to create a veth
shadow pair for the 41-00. 1 interfaces.

Create bird netns (the name bird is arbitrarily chosen here, you may use a different netns name)
which will run BIRD:

ip netns add bird
Create the veth pair:
ip link add dpi4l- type veth peer name rib4l- netns bird

The rib interface must have an IP address (and IPv6 if IPv6 is supported). This address will be the BGP
peer address for the BGP neighbour.

ip netns exec bird ip address add 10.0.0.4 broadcast 10.0.0.255 dev
rib41-

ip netns exec bird ip address add e dev rib41-
enable ARP on the interface
ip netns exec bird ip link dev rib41- arp on

set tx checksum offload off - turn off checksum calculation on the
interface

noticed that the CRC calculation on the interface may not be correct (at
least on some Cent0S-8 kernel builds)

ip netns exec bird ethtool -K rib41- tx off

L@ The IP address of the rib interfaces must be different from the SSG IP address given by

confusion, the bras _arp _ip and bras ipv6 address addresses should not be part

the bras arp ip and bras ipv6 address parameters. Furthermore, to avoid
@ of any subnet allocated to the TAP interfaces.

The dpi interface should have neither IPv4 nor IPv6 addresses, as SSG uses it as a TAP interface
and it is not required to have addresses on it (indeed, it may even get in the way if the interface itself
starts emitting packets):

ip link dev dpi4l- arp off

Disable IPv6 on dpiXXX interfaces (so that there is not even a link-local
address)

echo proc/sys/net/ipv6/conf/dpi4dl- disable ipv6

Finally, bring up all created interfaces:

ip link dpidl- up
ip netns exec bird ip link lo up
ip netns exec bird ip link rib41- up

Do not forget the firewall:

firewall-cmd --zone=internal --add-source=10.0.0.1
firewall-cmd --zone=internal --add-rich-rule='rule family=ipv4 source
address=10.0.0.1/24 accept'

Remember that BIRD must be run in bird netns:

ip netns exec bird /usr/local/sbin/bird

The state of the veth interfaces is controlled by SSG: if device 41-00.1 is link down,
@ SSG will link down the veth interfaces of that device; as soon as link 41-00.1 is up,
SSG will link up the veth interfaces.

What about the VLAN?

SSG sends packets to the rib interfaces "as is" without any conversion. It means that if
you have a VLAN, you have to use Linux to create vlan interfaces on the rib interface
ﬂ and bind the bird to those vlan interfaces.

In fastdpi.conf vlan interfaces created on a rib interface must not be listed anywhere -

you must specify the two ends of the veth pair as tap and peer.

P, MTU
SSG does not set the MTU on the veth interfaces. When configuring the veth
interfaces, the MTU must be set using the standard Linux tools.

SSG Settings

SSG Configuration
Mandatory parameters

To enable the routing function, you need to activate the parameter in fastdpi.conf

[cold] enabling the router

Boolean parameter:

0, false, off - router is off (default)

1, true, on - router is on

Does not allow changes on-the-fly via reload
router=1

Next you need to specify in which netns BIRD runs and the number of the kernel routing table it
builds:

[cold] net namespace in which BIRD is running
router netns=bird

[cold] Number of the kernel routing table that fastDPI uses
router kernel table=1

The following BRAS parameters must also be set, even if none of the BRAS modes are enabled:

Stingray Virtual MAC Address
bras arp mac=00:E0:ED:43:84:42

Stingray Virtual IP Address
bras arp ip=188.227.73.40

If IPv6 is used, virtual IPv6 addresses must be set:

Sets the global IPv6 address of the Stingray
bras ipv6 address=2098::1

Sets the IPv6 link-local address of the Stingray (prefix FE80::/10)
If this parameter is not set explicitly, it is calculated by

bras arp mac

#bras ipvé link local

listed below are optional and are for fine-tuning the router in Stingray Service

Q These three parameters are mandatory to enable the router. The other parameters
Gateway.

Additional parameters

The maximum number of routes is set by the parameters:

[cold] Maximum number of routes in IPv4 route table
Default value = 1000000
#router max ip4 route count=1000000

[cold] Maximum number of routes in IPv6 route table
Default value = 200000
#router max ip6 route count=200000

When starting in the router mode, SSG preallocates memory for the internal route table in accordance
with these parameters. It is recommended to set these options (if necessary) with 20-30% reserve to
ensure that the preallocated memory will be enough during the router operation.

The forwarding information base (FIB) in SSG is updated every router fib refresh seconds:

[hot] FIB update period, seconds
Default value - every 15 seconds
#router fib refresh=15

It makes no sense to set this parameter too small (less than 5 seconds).

The maximum size of neighbor cache (ARP cache) and the timeout for updating the records of this
cache is set by the parameters:

[cold] Max size of ARP cache (neighbor cache for IPvé6)
Default value - 1024, max = 32K
#router arp cache size=1024

The Stingray SG contains separate neighbor caches for IPv4 and IPv6, each of size
router_arp cache size.

The Stingray SG itself does not send ARP requests for obsolete cache entries. Instead, it relies on
updates from the Linux kernel: Stingray monitors the ARP responses coming to the TAP-interfaces
subnet address, and updates its ARP cache in accordance with these responses. The same applies to
IPv6 (monitoring ICMPv6 neighbor discovery).

The router runs in a separate thread on a separate CPU core. At start Stingray sets parameters of this
thread by default, which can be changed by parameters:

[cold] Adding to the priority of the router's service flow (increasing
the priority)
#router sched add prio=0

[cold] Router thread binding kernel, -1 - autodetection
#router bind core=-1

Do not change these parameters unless absolutely necessary; it is better to let SSG determine the

core and priority itself. For example, explicitly specifying a core for router router _bind core may
be useful if there are not enough cores; then you can explicitly bind router to a core to which some
other service thread (ajb, ctl) is bound.

LO] Never bind the router to the kernel of a worker thread or dispatcher!

VRF Configuration

The router _netns and router kernel table settings define the default VRF and are used when
describing other VRFs as default values for the corresponding VRF parameters.

When preparing the fastDPI for router mode, the administrator needs to create the necessary netns
and TAP interfaces to divert traffic to route-demons. In the fastdpi.conf configuration the ready
(existing) netns and TAP-interfaces are specified, only in this case the SSG will start.

Each VRF is specified by a separate new section in the router configuration:

Routing table description (VRF)

router vrf
id=
netns=
kernel table=
neighbor cache=

router default vrf=

id — string, unique ID of VRF. For a subscriber in Radius VSA authorization a VRF can be specified - it
is this the ID. The maximum size is 15 characters.

netns — name of netns from which VRF is calculated. If not specified, it is considered equal to the
router netns option. This netns contains peer TAP interfaces for this VRF.

kernel_table — number of kernel routing table for this VRF. If not specified, it is considered equal
to the router kernel table option.

router_default_vrf — string, ID default VRF. Default VRF is used for subscribers that do not have
the vrf id property.

neighbor cache — string, the name of the ARP cache for this default VRF, each VRF has its own
ARP/Neighbor cache isolated from the others. If you want several different VRFs to share a common
ARP/Neighbor cache, you should specify the same value of the neighbor cache option in the
description of these VRFs.

Parameters for this VRF:

max_ip4_route_count — maximum number of IPv4 routes.

max_1ip6_route_count — maximum number of IPv6 routes.

multipath_page — maximum number of pages for multi-path route distribution. One page can hold
64 different multi-path routes. One group can be placed on several pages (if the number of routes in

the group is more than 64, if there are no restrictions on the number of routes in the router daemon)
fib_refresh — FIB refresh interval.
arp_cache_size — ARP cache size.

These parameters define the required memory and refresh frequency for this VRF. Default values can
be specified here (taken from global options) or overridden.

e If there are no router_vrf sections in the configuration, the mode of operation remains the
same: back compatibility, meaning that one VRF is described in SSG, which is the default.

e If the configuration has router_vrf sections, the mode of operation is VRF support. In this
case exactly one VRF must be default, i.e. the option router default vrf=id of default
VRF must be set.

bras_vrf_isolation — VRF isolation. L2 BRAS does not isolate subscribers from different VRFs: If
this mode is enabled (1), subscribers from different VRFs will be isolated from each other. Default
value: 0. When this option is enabled:

1. subscriber's ARP to gateway — processed by fastDPI only if the subscriber and gateway are in
the same VRF

2. gateway ICMP ping — processed by fastDPI only if the subscriber and the gateway are in the
same VRF.

3. local interconnect — applies only if both subscribers are in the same VRF

bras_egress_filtering — filtering of outgoing traffic subs—inet (bitmask). By default it is
disabled (0). When enabled, the packet will be dropped if the following conditions are met:

1. the subscriber's IP address (srcIP) is unknown to L2 BRAS
2. bras term by as =0
3. subscriber's AS is not local

Description of router_device

A VRF id is added to the router device description. Description of one router interface:

router device
device=
tap=
peer=
vrf=
subnet=
subnet=
subnetb=
subnetb=

device — name of the device from in_dev/out dev.

tap — name of the TAP interface for the device (default='DPI' + device).

peer — name of the paired TAP interface in netns for VRF (default="'rib' + device).

vrf — identifier of the VRF where the peer is located. If not specified, it is considered equal to the
default VRF.

subnet and subnet6 — are subnets diverted from the general traffic to the TAP-device. At least one
subnet or subnet6 parameter must be set for router device!

subnet — listing of IPv4 subnets diverted from the general traffic to the TAP device.
subnet6 — listing of IPv6 subnets diverted from the general traffic to the TAP device.

Each IPv4 and IPv6 subnet is specified separately in the subnet and subnet6 parameter. There can
be a maximum of 16 subnet and 16 subnet6 parameters for one router device.

For example, BGP1 from VRF1 is subnet 10.20.30.0/24, BGP2 from VRF2 is subnet

@ Subnets for the same port must not overlap.
10.20.30.0/20.

VRF subscriber management

VRF ID is received by fastDPI at authorization in the new service 254.
VasExperts-Service-Profile = "254:VRF_ID"

Here “VRF_ID” is the VRF identifier.
Example of VRF configuration in SSG

in dev=0b-
out dev=13-

scale factor=

ctrl port=
ctrl dev=lo

federal black list=
black list sm=
black list redirect=http://operator.com/blockpage.html

num_threads=

router=
router vrf
1d=ROUTER
netns=router
kernel table=
neighbor cache=shared
router vrf

1d=ROUTER2

netns=router
kernel table=101
neighbor cache=shared

router device
device=13-00.0
vrf=ROUTER
tap=dpi
peer=rib
subnet=224.0.0.5/30
subnet=192.168.123.69/32

router device
device=13-00.0
vrf=ROUTER2
tap=dpi
peer=rib
subnet=192.168.123.70/32

router subs_announce=6

enable auth=1

auth servers=127.0.0.1%10:29002

bras enable=1

bras arp 1p=10.10.102.189

bras arp mac=00:0c:29:f5:85:47

bras dhcp mode=1

bras dhcp server=10.10.99.3%ens256; reply port=67
bras pppoe enable=1

bras pppoe session=100

bras ppp_auth list=2,3,1

enable acct=1

netflow=4

netflow timeout=300

bras pppoe service name=demoDPI

Setting veth-Interface Names

The fastdpi.conf describes all TAP-interfaces associated with the devices:

Description of one router interface
WARNING! '{' must be on the same line as the router device section name!
router device
Device name from in dev/out dev
device=
TAP interface name for the device (default='dpi' + device)
#tap=
Name of the paired TAP interface in netns for the device
(default='rib' + device)

#peer=
WARNING! '}' must be on a separate line!

For example, for this configuration

in dev=41-00.0
out dev=41-00.1

where only out_dev is connected to the router, the description would be:

in dev=41-00.0
out dev=41-00.1

router device
Device name from in dev/out dev
device=41-00.1
TAP interface name for the device (default='dpi' + device)
tap=tap41l
Name of the paired TAP interface in netns for the device
(default='rib' + device)
peer=bgp4l

It is possible not to specify the names of the tap and peer interfaces (default names are implied in
this case), but the router_device should be described:

in_dev=41-00.0
out dev=41-00.1

TAP for out dev:
router device
device=41-00.1

TAP for in dev
router device
device=41-00.0

In this case the TAP interface names are assumed to be as follows:

e for in_dev=41-00.0: dpi41-00.0 on the SSG side, rib41-00.0 on the BIRD side
e for out dev=41-00.1: dpi41-00.1 on the SSG side, rib41-00.1 on the BIRD side

LAG Support

Stingray Service Gateway 10.1 adds support for link aggregation in the router.

For aggregated channels, packets that need to be diverted to a TAP interface can go to any device

that is part of a LAG. To avoid creating the same TAP interface for each device in a LAG, the router
takes into account which devices are included in the LAG and for all such devices does a diversion of
traffic of the specified subnets to the TAP (to the BIRD daemon).

Each LAG is defined by a separate section in fastdpi.conf which lists all the devices included in the
LAG:

In/out devices, combined in a LAG
in dev=01-00.0:02-00.0
out dev=01-00.1:02-00.1

Describing the LAG towards the inet
lag
Optional LAG name, used only for log output
name=inet
Each device included in a LAG is described by a separate device
parameter
device=01-00.1
device=02-00.1

Description of one router interface
router device
Device name from out dev. Only for this device create a veth pair
of TAP interfaces
device=01-00.1
TAP interface name for the device (default='dpi' + device)
tap=tap0
Name of the paired TAP interface in netns for the device
(default='rib' + device)
peer=peero
Subnets diverted from total traffic to the TAP device (example)
subnet=10.0.10.0/26
#...other subnets. ..

With this description, traffic to TAP tap0 will be diverted from both 01-00.1 and 02-00. 1 devices

specified in the lag section, according to the rules (subnets) specified for 01-00.1 in
router device.

The lag section must contain at least two devices, and all devices must be of the same direction
(either all facing inet or all facing subs). One device may only be in one LAG (or not in any LAG at all).
If the router works both inet and subs direction (e.g. BGP on the inet side and OSPF inside the
network, subs side), two lag sections are described:

LAG towards inet
lag
name=inet
device=01-00.1
device=02-00.1

LAG towards subs
lag
name=subs
device=01-00.0
device=02-00.0

and a separate router_device section is configured for each.

A maximum of 10 different lag sections can be configured in total.

The lag section in fastdpi.conf is a cold parameter, requiring a fastdpi restart when
the LAG description is changed.

Multi-path routing (ECMP)

Support for multi-path routing (ECMP) is added in Stingray Service Gateway 10.2.

SSG performs traffic balancing (round-robin) at the flow level for all routes from the multi-path.
Balancing at the flow level means that a specific flow will be assigned to one of the routes from the
multi-path, and the selected route will not change until the end of this flow (unless the composition of
the multi-path is changed by external events from the routing daemon).

No configuration is required to enable multi-path in SSG. ECMP support is enabled in the configuration
parameters of the routing daemon. For example, in BIRD, ECMP support is enabled by specifying
merge paths yes inthe kernel protocol, see
https://bird.network.cz/?get_doc&v=20&f=bird-6.htm|#ss6.6.

Specifics of addresses announcement

Subscriber announcements and NAT pool

Announcing subscriber addresses is enabled by a parameter in fastdpi.conf:

[cold] Subscriber address announcement flags

Bit mask

Values:

1 - announce the subscriber's address towards subs

2 - announce the subscriber's address towards the inet (if the
subscriber does not have NAT connected)

4 - announce NAT subnets towards the inet

8 - announce subscriber gateways (direction is set by 1 and 2 flags)

Default value: 0 - not to announce anything
#router subs announce=0

https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://bird.network.cz/?get_doc&v=20&f=bird-6.html#ss6.6

[hot] Metric for subscriber address announcements
Default value = 32
#router subs metrics=32

BNG Router
o T

fdpi_ctrl load profile -service 11
profile.name test_nat —profile.json '{
nat_ip_pool” :"176.121.129.0/25",
nat_tcp_max_sessions" : 2000,
nat_udp_rmax_sessions" 2000 }

|
|
|
|
|
|
|
. |
| |
———Add Routes to Table—» :
!
|
|
|
|
|
|

176.121.126.0/25 dev rib13-00.0

K=* 176.121.129.0/25 [0/0] is
directly connected, rib13-00.0

Anounce BGP/OSPF bJI

» show route receive-protocol bgp

net.0: 348923 destinations, 1825681 routes (B483 21 active, D
holddown, 6 hidden)
Prefix Mexthop MED Lclpref AS path

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: *176.121.129.0/25% 951.197.175.2 0 100 4
|

NAT public address subnets are announced only towards the inet when the SSG starts and when
adding/removing/modifying NAT profiles.

Router

ACP D T L

PHER Beos AP Arcess-Reques——————»
Act-Semmon-id = “001 1228 5aa55607 1A
U - e = 34 15 P05 881"
Wby Pasaword = “WasEspars FaraDP
Caling-Sationrid= "BL1E3
Pui-Fort-Types § (Wirtu

wl =0

v ort-kd= "LI3M56

PG - IP- Ackirass = “IP Elp_ferlr

Service-Type = 2 (FramesLises

VasPperisServio=Type= 1

vasEaperta-DHCP-Request » Dscower

aopion k1

WasExperts-DHCP-= ey Remoneid =

31T 32e31 5726312632

| YasErper t-DHCP-Relaylrouit d = D006 13601000000 |

A T ST
- DHCP Ack . Lser-Hame = "sulerr berdZ

Framen- P-dctres = 19 121 150.1%
Framed-P-Nebmmk = 255 155 1550
VasExpirts-DHCP-Gaewary = 176121 1301
VasExperts-DHCP-ONS = B28.8

Request to the Inter net - I a——

| WasF e m-Poleing

= "rane_Smbit

Add Routes to Table

L

76121130 1532 devritld 3-D0.0 K>* 176.121 130 15/32 |00 is
girexfy connecied, ribl3-00.0

BGR/OSPF

* SNow oUDS M soe e pronooos Dgp:

1
1

I 1
i i
] 1
]]
I 1
I I
1 1
I]
I 1
i i
I }
I I
| |
I I
1 1
]]
I 1
i i
I I
1 I
11 1
i i
I I
]]
I 1
I I
]]
]]
i i
i i
I I
I I
| 1
i i
]]
]]
I 1
I I
! L
1 1

et O BEES S destrations, 1EN88] rostes (582 2] adwe,

FslaickowT il
Frefi Hexthop MED Loiprel AS path

*1PE LY. 1M0L15/32 9L197.1752 0 oo T

Subscriber addresses can be announced both towards inet and subs side. But if the subscriber's IP
address is in the private address range and the service 11 is assigned to it, the subscriber's address is

https://wiki.vasexperts.ru/doku.php?id=en:dpi:opt_cgnat:%D1%81gnat_settings:start#additional_settings

not announced towards the inet (so be careful when defining private address ranges). The
announcement is made to the BIRD routing table for all TAP-devices of the allowed direction, then
BIRD picks up the changes and announces them to the appropriate protocols according to its
configuration.

Announcement of L3 subscriber addresses

In SSG 10.2, the following algorithm of announcing IP-addresses of L3-subscribers operates:

* by default, the address announcement is performed for successful authorization (accept) and is
NOT performed for unsuccessful authorization (reject)

» fastdpi.conf parameter auth_announce reject allows to globally allow announcements for
reject:

[hot] To announce (1) or not (0) the unauthorized (Reject) subscribers
Default value - 0 (do not announce)
#auth _announce reject=0

¢ added new Radius-attribute VasExperts-Route-Announce: value 0 - do not announce
subscriber's address, value 1 - announce. This attribute has higher priority than
auth_announce reject.

To sum up, when deciding whether to announce the IP-address of the subscriber or not, the following
algorithm applies:

e If the VasExperts-Route-Announce attribute is explicitly set in the Radius response (Accept
or Reject), the announcement will be made for VasExperts-Route-Announce=1 and will NOT
be made for VasExperts-Route-Announce=0

e |f the VasExperts-Route-Announce attribute is not set in the Radius response:

o For Access-Accept (successful authorization), the subscriber's IP address will be
announced

o For Access-Reject (unsuccessful authorization), the IP address is announced only if
fastdpi.conf-parameter auth_announce reject=1

P, This algorithm is applied at the stage of calling the router announcement function; the
. router's fastdpi.conf parameter router subs announce regulates, whether or not
the subscriber's IP address is announced, and in which direction.

This algorithm is also used for ARP authorization and GTP authorization, that is, for all types of
authorization, where the subscriber's IP address is known at the time of the authorization call and
does not change. For other types of L2 authorization (DHCP, PPP, - all where the IP address is
explicitly allocated), he VasExperts-Route-Announce attribute is not taken into account, the
announcement occurs after the IP address is allocated to the subscriber.

Root Daemon Configuration (BIRD, FRR, etc.)

The settings of the Root daemon (BIRD, FRR, etc.) and SSG must be consistent: the root daemon must
create a kernel route table with the number given by the router_kernel table parameter.

https://wiki.vasexperts.ru/doku.php?id=en:dpi:bras_bng:opt_bras_l3:start

Supported Routing Daemons:

1. BIRD: official documentation. BIRD version 2 and higher is supported. Version 1 is not
supported.

2. FRRouting: official documentation

QUAGGA: official documentation

4. Juniper CRPD: official documentation

w

/ The example shows a special case, for more information please refer to the
\} documentation of the specific root daemon. In the context of VRF Lite, BIRD suits
better since the SSG runs on the Linux architecture.

BIRD configuration example

Specify additional features to be tested:

Any public address
is public
net '~ [10.0.0.0/8+, 172.16.0.0/12+, 192.168.0.0/16+, 100.64.0.0/10+

return true;
return false;

Any private address
is private
net ~ | 10.0.0.0/8+, 172.16.0.0/12+, 192.168.0.0/16+, 100.64.0.0/10+

return true;
return false;

Default gateway
filter default gw
net ~ [0.0.0.0
accept;
reject;

Specify the filters:
Routes that are not acquired from other routing protocols (and the prefix
1s not /32)
filter exclude external routes
source = RTS INHERIT net.len !=
accept;
reject;

https://bird.network.cz/?get_doc&f=bird.html&v=20
http://docs.frrouting.org/en/latest/
https://www.quagga.net/
https://www.juniper.net/documentation/product/en_US/crpd

Exclude routes from other routing protocols, public subnets, private
subnets — not /32
filter exclude ext 1 ip

1T (source = RTS INHERIT is public is private net.len
= 32 then
accept;
reject;

log "/var/log/bird.log" all;
router id 192.168.123.65;

debug protocols all;
Describe the tables
ipv4 table grt;

ipv4 table bird00;
ipv4 table bird01;

protocol device

protocol direct

disabled; # Disables by default
ipv4; # Connection to the default IPv4 table
ipv6; # ... and to the default IPv6 table

Describe kernel "protocols"
protocol kernel kernel grt

ipv4 # Connect the protocol to the IPv4 table
table grt;
import all; # Import to table, default is import all
export all; # Export to protocol. Default value - no export

scan time 5;
learn; # Examine incoming routes from the kernel table
kernel table 99; # Kernel table to synchronize with (default: main)

protocol kernel kernel bird00

ipv4 # Connect the protocol to the IPv4 table over the link
table bird00;
import all; # Import to table, default is import all
export all; # Export to protocol. Default value - no export

scan time 5;
learn; # Examine incoming routes from the kernel table
kernel table 100; # Kernel table to synchronize with (default: main)

protocol kernel kernel bird01

ipv4 # Connection of the protocol to the IPv4 table

table bird01;

import all; # Import to table, default is import all

export all; # Export to protocol. Default value - no export
scan 20;
learn; # Examine incoming routes from the kernel table
kernel table 101; # Kernel table to synchronize with (default: main)

Another instance for IPv6 that skips default settings
protocol kernel
ipvée { export all; };

protocol static
ipv4; # IPv4 channel with default parameters again

OSPF protocols (each instance with its own table)
protocol ospf v2 ospf grt
tick 1;
rfcl583compat no;
stub router no;
ecmp yes limit 16;
ipv4
table grt;
import all;
export all;

area 0.0.0.0
networks
192.168.123.64/30;
interface "rib.102"
cost 1;
rx buffer large;
type broadcast;
authentication none;

.
’

protocol ospf v2 ospf bird01
tick 1;
rfcl583compat no;
ecmp yes limit 16;
ipv4
table bird01;

import all;
export all;
#export filter exclude ext 1 ip;

area 0.0.0.0
networks
192.168.123.68/30;
interface "rib.202"
cost 1;
rx buffer large;
type broadcast;
authentication none;

.
’

Describe routing "protocols" that are designed to "flip" routes between
tables (using filters)
protocol pipe grt birdG0

table grt;

peer table bird00;

import all;

export filter default gw;

protocol pipe grt bird01
table grt;
peer table bird01;
import all; # filter exclude ext 1 ip;
export all; #filter default gw;

Router Troubleshooting

SSG Router for debugging purposes can record traffic from BIRD to pcap:

[hot] Recording pcap from the router's TAP interfaces
Note: You can also record traffic with the tcpdump utility (specify
the TAP interface name).

But the problem is that tcpdump does not work with interfaces in
DOWN mode,

hat is, tcpdump cannot record traffic

when the interface goes from DOWN to UP.

AP interface names with ';' or 'all' (record from all)

For each TAP interface, a separate pcap file named
tap <interface name> xxx.pcap 1S created

in the directory specified by the ajb udpi path parameter (by default
/var/dump/dpi)
#router tap pcap=all|the list of TAP interfaces separated by ';'

[hot] Direction of packets for pcap recording from TAP interfaces
Values:
1 - TAP -> inward (packets from the TAP interface)
2 - outward -> TAP (packets towards the TAP interface)
0 or 3 - all directions
#router tap pcap dir=0

[hot] TAP pcap rotation interval, seconds

0 - is taken from the ajb udpi ftimeout parameter (ajb udpi ftimeout
1s set in minutes)
#router tap pcap rotate=0

You can also enable recording to pcap the data exchange with the kernel (rtnetlink):

[hot] To record rtnetlink messages B pcap or not

0 - recording disabled

1 - recording enabled

Prefix of pcap files = "rtnl"
#router rtnl pcap=0

Moreover, if packets are recorded to pcap by address mask (ajb _save_ 1ip), the router will also
record the resulting packet to pcap after routing is applied. That is, there will be two entries in pcap
for one incoming packet: the first entry is the original packet, the second is the sent packet.

CLI commands

Stingray has a set of CLI commands to view the current router status. For a complete list of
commands see:

fdpi cli help router

RIB and FIB dump commands output a lot of data, because these structures can
contain hundreds of thousands of records in case of BGP full view. Therefore, when
calling these commands we advise to redirect the output to the file

Also keep in mind that the routing table for BGP, OSPF, etc. is built by BIRD, which has its own
command line utility birdc and its own configuration file with a developed system of commands for
filtering, setting static routes etc.

In addition, the standard Linux ip utility gives you full control over the kernel route table. When using
the ip utility, remember to specify the correct netns (router netns) and routing table number
(router kernel table).

	Содержание
	4 Soft-Router
	General Description
	The Internal Router Architecture
	Default values in the Router

	VRF General Description
	VRF Lite in Stingray Service Gateway
	Behavior

	TAP Subnets Configuration
	Creating veth interfaces
	SSG Settings
	SSG Configuration
	Mandatory parameters
	Additional parameters
	VRF Configuration
	Routing table description (VRF)
	Description of router_device
	VRF subscriber management

	Example of VRF configuration in SSG

	Setting veth-Interface Names
	LAG Support

	Multi-path routing (ECMP)
	Specifics of addresses announcement
	Subscriber announcements and NAT pool
	Announcement of L3 subscriber addresses

	Root Daemon Configuration (BIRD, FRR, etc.)
	BIRD configuration example

	Router Troubleshooting
	CLI commands

