CopepxaHue

DPDK Interfaces Configuration ... s 3
SYStem Preparationccccoiiuiiiiiiiiiii e 3
POrts conNfigurationoooiiiiiiiii e 3
Stingray SG Configurationuvviiiiiiiii e 4
Setting device @li@Sesooooiiiiii i 5
Configuration iN HYPEIr-Vooo et 6
CHUSTEI'S ...ttt e e oot e e e e et e e e e e s b e e et e e e s e nn e et e e e e e nrrreeeeeaannes 7
Number of Cores (TRreads) ..o e 8

g o] LT o = 11 o [T Vo IR 0 TN o] =P 9
The Dispatcher Thread LOAdcccccoiiiiiiiiiiiiiiiiiiie et 10
dpdk_engine=0: One diSPatCher ... 11
dpdk_engine=1: Dispatchers by dir@Ctionc.cooiiiiiiiiiii e 11
dpdk_engine=2: RSS SUPPOIToeiiiiiiiiiiiieee et r e e e e e e e e e e e s annees 12
dpdk_engine=3: Dispatcher for a bridge ..o 12
dpdk_engine=4: Dispatcher fOr @ POIt ... 13

dpdk_engine=6:

RSS dispatchers per bridgeevvvooiii 13

DPDK Interfaces Configuration

DPDK (Data Plane Development Kit) allows working with network cards directly without actually using
the Linux kernel. This improves the performance of the solution. DPDK supports many more models of
network cards than pf_ring, and a much richer interface. So it allows you to implement various
working schemes, suitable for 10G, 25G, 40G, 100G traffic, etc.

System Preparation

The initial installation of DPI is done by VAS Experts technical support. Please do not try to do the
initial installation yourself, as we may need to check all the steps you have done later, which
increases the workload of tech support.

Later on you will be able to add or remove network ports and change the configuration yourself.

Ports configuration

The network cards that Stingray will work with are removed from the control of the operating system
and therefore are not visible as Ethernet devices to the operating system. The DPDK addresses
Ethernet devices by their PCI identifiers, which can be obtained by a command:

lspci -D|grep Eth

0000:04:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit
SFI/SFP+ Network Connection (rev 01)
0000:04:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit
SFI/SFP+ Network Connection (rev 01)

This command outputs a list of all ethernet-type PCl devices. Each line starts with a PCI device system
identifier - these PCl identifiers are the unique identifiers of the network card in the DPDK.

The list of cards in DPDK mode can be checked with the command driverctl list-overrides.
Command output:

0000:04:00.0 vfio-pci
0000:04:00.1 vfio-pci

If necessary, the cards can be taken out of DPDK mode with a command and the regular Linux driver
is activated for them.

You will need to stop the Fastdpi process beforehand.
service fastdpi stop

driverctl unset-override 0000:04:00.0

https://www.dpdk.org/
https://wiki.vasexperts.ru/doku.php?id=en:dpi:dpi_components:utilities:management_utilities
https://wiki.vasexperts.ru/doku.php?id=en:dpi:dpi_components:utilities:management_utilities

driverctl unset-override 0000:04:00.1

After working with the regular driver, do not forget to put them back under DPDK control with the
command:

driverctl -v set-override 0000:04:00.0 vfio-pci
driverctl -v set-override 0000:04:00.1 vfio-pci

control interface into DPDK mode - communication with the server will be immediately

@ When switching cards into DPDK mode be careful not to accidentally switch the server
cut off!

In older installations, the igb_uio driver was used instead of vfio-pci, as you can see in
the output of the command

driverctl list-overrides

0000:04:00.0 igb uio

In this case it is recommended to switch to the vfio-pci driver. To do this, run these
@ commands for all devices in the list of list-overrides:

echo "options vfio enable unsafe noiommu mode=1" >

/etc/modprobe.d/vfio-noiommu.conf
driverctl -v set-override 0000:04:00.0 vfio-pci

Setting enable _unsafe noiommu_mode=1 may require a server reboot.

Stingray SG Configuration

When the system is configured to work with DPDK, you can start configuring the Stingray SG. The
interfaces are configured with «in»-«out» pairs (for the future convenience, the «in» interface should
face the operator's internal network, and the "out" - the uplink). Each pair forms a network bridge that
is L2 transparent. PCl identifiers are used as interface names with the replacement of ":' by '-'
(because the symbol "' in the interface name is reserved in Stingray SG to separate interfaces in one
cluster):

In - port 41:00.0
in dev=41-00.0

Out - port 41:00.1
out dev=41-00.1

This configuration sets a single bridge 41-00.0 «- 41-00.1
You can specify a group of interfaces with "'

in dev=41-00.0:01-00.0:05-00.0

https://wiki.vasexperts.ru/doku.php?id=en:dpi:dpi_components:utilities:management_utilities

out dev=41-00.1:01-00.1:05-00.1

This group forms the following pairs (bridges):

41-00.0 «- 41-00.1

01-00.0 «- 01-00.1

05-00.0 «- 05-00.1

The pairs must have devices of the same speed; it is unacceptable to pair 10G and 40G cards.
However, the group can have interfaces of different speeds, for example, one pair is 10G, the other is
40G.

The maximum ethernet packet size on the devices is set by the snaplen option in fastdpi.conf, by
default snaplen=1540.

Setting device aliases

Starting from version 9.5.3, the SSG now allows you to specify aliases for devices. This is due to the
fact that DPDK supports numerous devices, not only PCl devices, but also, for example, vmbus
devices (Hyper-V) or virtual (vdev) devices. Additionally, each DPDK driver supports its own set of
configuration parameters for fine-tuning. The syntax of describing such devices is incompatible with
the syntax of the in_dev'/'out dev task, so the notion of an alias device has been introduced.

The essence of the alias is very simple: you describe the desired device in a separate parameter and
give this description a name. Then in the in_dev, out dev, tap dev (and in all other parameters
that refer to devices from in_dev and out dev) you specify this name - the alias of the device.

Each alias is specified by a separate dpdk device parameter:
dpdk device=alias:bus:device-description
Here:

e alias specifies an alias of the device (e.g. ethl). Only letters and numbers are allowed in the
alias.

e bus - bus type: pci, vmbus, vdev.

e device-description - device descriptor in DPDK syntax.

For example:

ethl is the alias of PCI device 41:00.0
dpdk device=ethl:pci:41:00.0

eth2 eth2 is the alias of PCI device 41:00.1
dpdk device=eth2:pci:41:00.1

in_dev=ethl
out dev=eth2

This description is equivalent to the following:

in dev=41-00.0

out dev=41-00.1

Note that in dpdk _device the PCI device is specified in the canonical form 41:00.0.

(For PCI devices, assigning to in_dev/out dev via aliases is not necessary, you can
7 use the old notation.

If you want to connect Hyper-V devices (and these are not PClI devices, but VMbus devices), then the
use of aliases is mandatory. Example:

dpdk device=subsl:vmbus:392b7b0f-dbd7-4225-a43f-4c926fc87e39

dpdk device=subs2:vmbus:58f75a6d-d949-4320-99el-a2a2576d581c, Latency=30
dpdk device=inetl:vmbus:34flccl6-4b3f-4d8a-b567-a0eb61ldc2b78

dpdk device=inet2:vmbus:aed6f53e-17ec-43f9-b729-f4a238c49ca9, latency=30
in _dev=subsl:subs2

out dev=inetl:inet2

Here we not only set the alias, but also specify the latency=30 argument for the DPDK driver. In
fact, each DPDK driver supports its own set of arguments, see DPDK documentation for the
corresponding version (The version of the DPDK from which the SSG is built is displayed in the
fastdpi alert.log at startup, as well as when calling fastdpi -ve). It should be noted that
careless setting of arguments for the driver can lead to hard-to-detect errors and SSG performance
downgrade, so do not use this feature without consulting our technical support.

Configuration in Hyper-V

Starting with version 9.5.3, SSG supports running in a Hyper-V virtual machine. On guest VEOS must
be installed:

Multi-queue support - required for SSG
dnf install kernel-modules-extra

C!) Host system (Windows) must support multiple channels for virtualized NICs

Devices on Hyper-V are VMBus, and not PCl devices, so they require a special conversion to DPDK
mode. Each device (interface) is identified by its unique UUID, so first you need to know the UUIDs of
all interfaces that SSG will work with. Then you have to put the device into DPDK mode:

switch the interfaces ethO and eth2 into DPDK mode
for DEV in eth@ eth2
do
get the UUID for the device
DEV_UUID=$(basename $(readlink /sys/class/net/$DEV/device))
switch to DPDK compatible mode
driverctl -b vmbus set-override $DEV UUID uio hv generic

https://doc.dpdk.org/guides/nics/index.html
https://wiki.vasexperts.ru/doku.php?id=en:veos:installation

Device appears in
/sys/bus/vmbus/drivers/uio hv generic/$DEV_UUID

echo "$DEV uuid=$DEV UUID"
done

If necessary, the interface can be switched back to kernel-mode like this:

ETHO UUID=<eth® UUID>
driverctl -b vmbus unset-override $ETHO UUID

Next, configure the SSG - set the devices in fastdpi.conf. While doing so, use alias to specify the
UUIDs that we have just learned:

eth® UUID=392b7b0f-dbd7-4225-a43f-4c926fc87e39

dpdk device=eth0:vmbus:392b7b0f-dbd7-4225-a43f-4c926fc87e39
eth2 UUID=34flccl6-4b3f-4d8a-b567-aleb6ldc2b78

dpdk device=eth2:vmbus:34flccl6-4b3f-4d8a-b567-a0eb61dc2b78

then use the aliases ethO and eth2 everywhere when specifying the
devices
in dev=eth0
out dev=eth2

Clusters

The DPDK version of Stingray SG supports clustering: you can specify which interfaces are included in
each cluster. The clusters are separated with the '|' symbol.

in dev=41-00.0|01-00.0:05-00.0
out dev=41-00.1|01-00.1:05-00.1

This example creates two clusters:

e cluster with bridge 41-00.0 «- 41-00.1
e cluster with bridges 01-00.0 «- 01-00.1 and 05-00.0 «- 05-00.1

Clusters are a kind of a legacy of the Stingray SG pf ring-version: in pf ring, cluster is the basic
concept of "one dispatcher thread + RSS handler threads" and is almost the only way to scale. The
disadvantage of the cluster approach is that the clusters are physically isolated from each other: it is
impossible to forward a packet from the X-interface of cluster #1 to the Y-interface of cluster #2. This
can be a significant obstacle in the SSG L2 BRAS mode.

In DPDK, clusters are also isolated from each other, but unlike pf ring, here a cluster is a more logical
concept inherited from pf_ring. DPDK is much more flexible than pf _ring and allows you to build
complex multi-bridge configurations with many dispatchers without using clusters. In fact, the only
"pro" argument for clustering in the Stingray-DPDK version is the case when you have two
independent networks A and B connected to the Stingray SG, which should not interact with each
other in any way.

(Tip: instead of using clusters, consider switching to a different dpdk _engine, that is
b more suitable for your load.

The following descriptions of configurations assume that there is only one cluster (no clustering).

Number of Cores (Threads)

CPU cores are perhaps the most critical resource for the Stingray SG. The more physical cores there
are in the system, the more traffic can be processed by the SSG.

Stingray SG does not use Hyper-Threading: only real physical cores are taken into
account, not logical ones.

Stingray SG needs the following threads to operate:

e processing threads - process incoming packets and write to the TX-queue of the card;

e dispatcher threads - read the card's RX queues and distribute incoming packets among
processing threads;

e service threads - perform deferred (time-consuming) actions, receive and process fdpi_ctrl and
CLI, connection with PCRF, sending netflow

e system kernel - dedicated to the operating system.

Processing and dispatcher threads cannot be located on the same core. At start, Stingray SG binds
threads to cores. Stingray SG by default selects the number of handler threads depending on the
interface speed:

10G - 4 threads

25G - 8 threads

40G, 50G, 56G - 16 threads

100G - 32 threads

For a group, the number of threads is equal to the sum of threads number for each pair; e.qg., for the
cards:

41-00.x - 25G NIC
01-00.x - 10G NIC
in dev=41-00.0:01-00.0
out dev=41-00.1:01-00.1

12 processing threads will be created (8 for 25G card and 4 for 10G card)

In fastdpi.conf, you can specify the number of threads per cluster using the num_threads parameter:

41-00.x - 25G NIC
01-00.x - 10G NIC
in dev=41-00.0:01-00.0
out dev=41-00.1:01-00.1

num_threads=8

This configuration will create 8 processing threads.

Stingray SG, when planning cores, takes into account the NUMA node, which includes

@ the cores and the card: if the card is on NUMA node 0, the SSG will assign handler
threads and dispatcher threads to NUMA node 0 as well. If there are not enough cores
in the NUMA node, the SSG will not start.

In addition to the handler threads, for operating you also need at least one dispatcher thread (and
therefore at least one more core) that reads the rx-queues of the interfaces. The dispatcher's task is
to ensure that packets belonging to the same flow get into the same handler flow.

The internal architecture of working with one or many dispatchers is strikingly different, therefore
Stingray provides several engines configured by the dpdk engine parameter of the fastdpi.conf file:

e dpdk _engine=0 - read/write default engine, one dispatcher for all;

e dpdk _engine=1 - read/write engine with two dispatcher threads: for each direction by
dispatcher;

e dpdk _engine=2 - read/write engine with RSS support: for each direction dpdk_rss
dispatchers are created (dpdk rss=2 by default). Thus, the total number of dispatchers =2 *
dpdk_rss;

e dpdk _engine=3 - read/write engine with a separate dispatcher for each bridge.

Further, all these engines are described in detail, their configuration features and areas of application,
and the dispatcher threads in gneral.

Explicit Binding to Cores

You can explicitly bind threads to cores in fastdpi.conf. The parameters:

e engine bind cores - list of core numbers for processing threads
e rx _bind core - list of core numbers for dispatcher threads.

The format for specifying these lists is the same:

10G cards - 4 processor threads, 1 dispatcher per cluster
in dev=01-00.0|02-00.0
out dev=01-00.1|02-00.1

Bind processing threads for cluster #1 to cores 2-5, dispatcher to core 1
for cluster #2 - to cores 7-10, dispatcher to core 6

engine bind cores=2:3:4:5|7:8:9:10

rx_bind core=1|6

Without clustering:

10G cards - 4 processing threads per card
in dev=01-00.0:02-00.0

out dev=01-00.1:02-00.1
2 dispatchers (by directions)
dpdk _engine=1

Bind processing threads and dispatcher threads
engine bind cores=3:4:5:6:7:8:9:10
rx_bind core=1:2

As noted, the handler and dispatcher threads must have dedicated cores; it is not allowed to bind
several threads to one core - the Stingray SG will display an error in fastdpi_alert.log and will not start.

Explicit binding to cores can only be applied in emergency cases; automatic binding is
(usually enough. To find out the core numbers, we advise you to run the SSG with
3 automatic binding (without engine bind cores and rx_bind core parameters)

and look at the dump of the system topology in fastdpi_alert.log: core number is Icore

and does not take into account the NUMA node, which may negatively affect

@ With the explicit binding, SSG strictly follows the parameters specified in fastdpi.conf
performance (minus 10% - 20%)

The Dispatcher Thread Load

If the load of the dispatcher thread is close to 100%, it does not mean that the dispatcher cannot
cope: DPDK assumes that data from the card is read by the consumer (this is the dispatcher) without
any interruptions, so the dispatcher constantly queries the state of interfaces rx-queues for the
presence of packets (the so-called poll mode). If no packet is received within N polling cycles, the
dispatcher is disabled for a few microseconds, which is quite enough to reduce the load on the core to
several percent. But if packets arrive once in N-i polling cycles, the dispatcher will not enter the sleep
mode and the core will be loaded at 100%. This is normal.

The load of SSG threads can be viewed with the following command:

'\‘) top -H -p “pidof fastdpi’

The real state of each dispatcher can be seen in fastdpi_stat.log, - it also displays statistics on
dispatchers in the following form:

[STAT 1[2020/06/15-18:17:17:479843] [HAL][DPDK] Dispatcher statistics
abs/delta:
drop (worker queue full) | empty NIC RX |
RX packets
Cluster #0: 0/0 0.0%/ 0.0% | 98.0%/95.0% |
100500000/100500

X

here empty NIC RX - this is the percentage of empty polls of cards rx-queues - an absolute
percentage (since the beginning of the Stingray SG operation) and relative (delta since the last output
in the stat-log). 100% means that there are no input packets, the dispatcher is idle. If the relative
percentage is less than 10 (that is, in more than 90% of interface polls there are ingoing packets), the
dispatcher cannot cope and it is necessary to consider another engine with more dispatchers.

There is another good indicator that the current engine cannot cope: a non-zero delta value for the
drop (worker queue full). This is the number of dropped packets that the dispatcher was
unable to send to the processing thread because the processor's input queue was full. This means
that the handlers are unable to handle incoming traffic. This can happen because of two reasons:

e either there are too few processing threads, you need to increase the num threads parameter
or choose another engine (the dpdk _engine parameter);

e or the traffic is heavily skewed and most of the packets go to one or two handlers, while the
rest are free. In this situation, you need to analyze the traffic structure. You can try to increase
or decrease the number of handler threads by one, so that the dispatcher hash function would
distribute packets more evenly (the number of the processing thread is hash package mod
number of handlers).

dpdk_engine=0: One dispatcher

In this mode, Stingray SG creates one dispatcher thread per cluster. The dispatcher reads incoming
packets from all in_dev and out_dev devices and distributes the packets to the handler threads.
Suitable for 10G cards, withstands loads up to 20G or more (depends on the CPU model and the
check_tunnels parsing mode)

(The total number of cores required is equal to the number of handlers plus one core
7 per dispatcher.

Stingray SG configures cards as follows:

e RX queue count =1
e TX queue count = number of processing threads. Processing threads record data directly each
to their TX-card queue.

For read-only mode (without out dev) the TX queue number is zero. Some DPDK
(drivers (e.g. vmxnet3) do not allow to configure the card with TX queue number equal
3 to zero. For such drivers, in SSG version 10.2 the fastdpi.conf parameter
dpdk_txqg_count is introduced: dpdk txq count=1

dpdk_engine=1: Dispatchers by direction

In this mode, two dispatcher threads are created: one for directing from subscribers to inet (for
in_dev), the other for directing from inet to subscribers (for out_dev). Suitable for loads over 20G
(25G, 40G cards).

https://wiki.vasexperts.ru/doku.php?id=en:dpi:dpi_components:platform:dpi_inst_spec:dpi_tunnels

(The total number of cores required is equal to the number of handlers plus two cores
3 per dispatcher.

Stingray SG configures cards as follows:

e RX queue count =1
e TX queue count = number of processing threads. Processing threads record data directly each
to their TX-card queue.

dpdk _engine=2: RSS support

In this mode, RSS (receive side scaling) cards are used. The RSS value is set in fastdpi.conf with the
parameter:

dpdk rss=2

The dpdk rss value must not be less than 2. For each direction, dispatcher dpdk rss is created.

(The total number of cores required is equal to the number of handlers plus dpdk rss
b * 2 per dispatchers

Suitable for powerful 50G+ cards (for SSG-100+). If you have a grouping of 50G from several cards,
this mode is hardly suitable, since for each card from the group it requires at least 2 additional cores
(with dpdk rss=2). It is better to consider the options dpdk _engine=1 or dpdk engine=3.

Stingray SG configures cards as follows:

e RX queue count = dpdk rss
e TX queue count = number of processing threads. Processing threads record data directly each
to their TX-card queue.

dpdk_engine=3: Dispatcher for a bridge

A separate dispatcher thread is created for each bridge. Designed for configurations with multiple
input and output devices:

in dev=01-00.0:02-00.0:03-00.0
out dev=01-00.1:02-00.1:03-00.1
dpdk engine=3

In this example, three dispatcher threads are created:

e for bridge 01-00.0 «- 01-00.1
e for bridge 02-00.0 «- 02-00.1
e for bridge 03-00.0 «- 03-00.1

(The total number of cores required is equal to the number of handlers plus the number
b of bridges.

This engine is designed for several 25G/40G/50G cards in a group (that is, for SSG-100+).

Stingray SG configures cards as follows:

e RX queue count =1
e TX queue count = number of processing threads. Processing threads record data directly each
to their TX-card queue.

dpdk _engine=4: Dispatcher for a port

A separate dispatcher thread is created for each port (device). Designed for configurations with a
range of devices on input and output:

in dev=01-00.0:02-00.0:03-00.0
out dev=01-00.1:02-00.1:03-00.1
dpdk engine=4

For this example, six dispatcher threads are created - one dispatcher for each device. Obviously, if we
have only one bridge, this engine is equivalent to dpdk engine=1 - one dispatcher per direction.

(J) The total number of cores required is equal to the number of handlers plus the number
N
of ports

This engine is designed for multiple 25G/40G/50G cards in a group (i.e. for S5G-100+)
The SSG configures the cards as follows:

e RX queue count =1
e TX queue count = The processing threads write directly each to its own TX queue card.

dpdk engine=6: RSS dispatchers per bridge

C!) This dpdk _engine is available starting from version 14.0!

This engine is intended for configurations with multiple bridges (devl:dev2:dev3:...) for 100G+ cards.

in dev=41-00.0:02-00.0:c3-00.0:c1-00.0:04-00.0:04-00.1
out dev=41-00.1:41-00.1:02-00.1:02-00.1:¢c3-00.1:¢c3-00.1

dpdk engine=6
dpdk rss=4
num threads=64

dpdk mempool size=256000
mem_tracking flow=40000000
mem_tracking ip=40000000

dpdk emit mempool size=256000
mem ssl parsers=18000000
mem_http parsers=512000

This example creates 24 dispatcher threads — 4 dispatchers per bridge.

Total number of dispatchers = dpdk rss * number of bridges.
.‘ For 100G+ NICs, with a ratio of 1 dispatcher per 10G, the minimum number of
7 dispatchers is 10.

Starting from version 14.0, the maximum number of dispatchers is 32.

On-stick devices are supported.
SSG configures the cards as follows:

e RX queue count = dpdk rss
e TX queue count = number of processing threads. Processing threads write directly to their own
TX queue on the card.

	Содержание
	DPDK Interfaces Configuration
	System Preparation
	Ports configuration
	Stingray SG Configuration
	Setting device aliases
	Configuration in Hyper-V
	Clusters
	Number of Cores (Threads)
	Explicit Binding to Cores

	The Dispatcher Thread Load
	dpdk_engine=
	dpdk_engine=
	dpdk_engine=
	dpdk_engine=
	dpdk_engine=
	dpdk_engine=

