
Содержание
Cache management utility 3 ...
CCU configuration 3 ..

YAML format 3 ..
Conventions to specify the parameters 4 ..
Parameters 4 ...

Working directories 4 ...
Events 5 ..
Logging 5 ..
Statistics collection 5 ..
Day categories and time classes 6 ...
Jobs 7 ..
Storage 14 ..
SSD-Caching 19 ..

Initial configuration 20 ..

Cache management utility

CCU - Cache Control Utility

CCU is designed to load data into the cache, manage its content and collect statistics. The utility
supports a flexible configuration which includes all the specified parameters.

CCU configuration

The main configuration file is the /etc/ccu/ccu.conf. The configuration in this file is specified using the
YAML format.

YAML format

The basic elements of the YAML format are:

"Key-Value" pair, for example:
default: offpeak
value sequence, for example:
- "00:00:00 - 01:00:00"
- "17:00:00 - 23:59:59"

It is possible to create complex data structures based on the basic elements.

One of the principles describing complex structures laid down in the YAML format is the formatting
nested elements rule using indents from the beginning of the line. Elements located on the same
hierarchy level must have the same number of leading spaces, for example, the following text:

#
Time classes
time_classes: # Defines the classes of time
 default: offpeak # Specifies the default value for time classes
 # All others items define the names of time
classes and rules for them definition
 # Each rule is started from the name of day
category and contains
 # the list of ranges of times in form "HH:MI:SS-
HH:MI:SS"

 peak:
 workdays:
 - "00:00:00 - 01:00:00"
 - "17:00:00 - 23:59:59"
 weekend_eve:
 - "00:00:00 - 02:00:00"

https://ru.wikipedia.org/wiki/YAML
https://ru.wikipedia.org/wiki/YAML
https://ru.wikipedia.org/wiki/YAML

 - "16:00:00 - 23:59:59"
 weekend:
 - "00:00:00 - 02:00:00"
 - "09:00:00 - 23:59:59"
 holidays:
 - "00:00:00 - 02:00:00"
 - "09:00:00 - 23:59:59"

can be treated as the time_classes data structure having the following fields: default and peak.
The peak field in turn is also a structure with the workdays, weekend_eve, weekendand holidays
fields which are the named string series.

Given the above, the main rule when editing YAML format documents is using a certain number of
whitespaces to form indents instead of using tabs.

Conventions to specify the parameters

To specify the name of a particular field in a complex nested structure, you should use the full
field name, which is an enumeration of all field names separated by a slash, for example:
time_classes/peak/workdays
To specify the name of user-defined element or the name of element that refers to another
element, you should use the symbolic element definition specified between the signs less and
more, for example: time_classes/peak/<the_day_category>
Unless otherwise specified, the full name is specified to be relative to the entire configuration
file, for example: time_classes/peak/workdays, or when describing the full name, you can
specify its base, for example: the time classes description (time_classes) are specified by the
parameters in the <time_class>/<the_day_category>form that contain a listing of time
intervals

Parameters

Working directories

The following two parameters specify the directories where files with running processes identifiers will
be stored -pid_files_path and working files of the cache management utility -
work_files_path. Among the working files, in particular, are the files that store the cache usage
statistics.

#
PID files path, default: /var/run/ccu
pid_files_path: /var/run/ccu

#
Work files directory, default: /var/lib/ccu
work_files_path: /var/lib/ccu

https://ru.wikipedia.org/wiki/YAML

Events

When the certain events occur the ccu can perform actions specified by the user. Actions to be
executed should be specified to meet the rules of the command line interpreter.
Only one event currently is supported: creation of a text file containing information about objects
stored in caches. To set the response to the event, you should define the
events/on_after_enumeration_creation parameter. A command to create a binary cache
contents representation in the event configuration template is specified.

#
Events
events:
 # Command which should be executed after caches' files enumeration
 on_after_enumeration_creation: "cut -d' ' -f2
/var/cache/ccu/data/enumerated.cs | url2dic
/var/cache/ccu/data/enumerated.bin"

Logging

Logging options include the path to the log files, as well as the message levels to be written to the
file. The most detailed journaling level is the debug level, i.e. when it is enabled all possible messages
will be written to the file. When the error journaling level is specified, only errors will be written to
the file.
The logging levels are specified separately for each ccu command.

#
Logging parameters
logging:
 path: /var/log/ccu
 levels: # Enabled log levels for
particular command
 # Possible levels are:
 # error, warning, info,
diagnostic, debug
 # default logging level is
"info"
 load: "info"
 purge: "info"
 remove: "warning"
 online: "info"
 monitor: "info"

Statistics collection

The fields of the statistics/collectors/

0

parameter specify the node address and the port the data about the cache usage will be sent. In the
future, the name of the statistical collector can be used when describing the CACHEs.

#
Statistics parameters
statistics:
 collectors: # list of collectors'
descriptions
 local: # name of collector
description
 host: localhost # listening address
 port: 1600 # listening port

Day categories and time classes

Day classes and time classes are used to specify the restrictions for data loading to the cache. In
order to specify the category of the day, you should create the day_categories/<day_category>
parameter, whose value is the list of days that fall into the created day category. The day list element
can be both the name of the day of the week, as well as a partially or fully defined date. When
determining the category of a day for a specific date, the more particular definitions are examined in
the first place, after that the more general ones are examined.

#
Day categories
day_categories: # Defines day categories which could be used in time
class definitions
 # Items under "day_categories" define names of
categories;
 # To define the day categorie it is necessary to specify
list of values,
 # value can be one of following:
 # - week day
 # - partially or fully defined date in form
DD.MM.YYYY
 # for example:
 # "01" - the first day of each month
 # "07.01" - the 7th of January of each year
 # "09.05.2015" - 2015, the 9th of May

 workdays: [Mon, Tue, Wed, Thu]
 weekend_eve: [Fri]
 weekend: [Sat, Sun]

 holidays:
 - "01.01"
 - "07.01"
 - "23.02"
 - "08.03"
 - "01.05"

 - "09.05"
 - "12.06"
 - "04.11"

Time classes divide the day of a certain category into time intervals. To specify the time class, you
should create the time_classes/<time_class> parameter, as well as a parameters set for a time
class that define the day category. Its values are represented by a list of time intervals. The default
time_classes/default time class parameter is specified in a special way. If the time class can not
be determined using the specified parameters, then the default time class will be used instead.

In the example below, the peak time class is specified and the time intervals for each day category
considered to be peaking are defined. If no rule specifying the peak time class can be used, then the
default time offpeak class will be used.

#
Time classes
time_classes: # Defines the classes of time
 default: offpeak # Specifies the default value for time classes
 # All others items define the names of time
classes and rules for them definition
 # Each rule is started from the name of day
categorie and contains
 # the list of ranges of times in form "HH:MI:SS-
HH:MI:SS"

 peak:
 workdays:
 - "00:00:00 - 01:00:00"
 - "17:00:00 - 23:59:59"

 weekend_eve:
 - "00:00:00 - 02:00:00"
 - "16:00:00 - 23:59:59"

 weekend:
 - "00:00:00 - 02:00:00"
 - "09:00:00 - 23:59:59"

 holidays:
 - "00:00:00 - 02:00:00"
 - "09:00:00 - 23:59:59"

Jobs

The job parameters are specified as nested jobs parameter structures. There are the following tasks:

jobs/monitor - monitoring of the network interfaces and data cache usage;
jobs/load - data cache loading/validating;
jobs/scan - auxiliary task designed for data analysis Storages;

Further, when describing, the full parameter name will be based on the jobs parameter .

Monitoring

For the monitoring job, you should specify the incoming connection parameters
(monitor/listener/host and monitor/listener/port), which will be used to receive
messages from other processes. If one computer is used for all processes, then these parameters
have to match the parameters defined for statistics collectors description.

In other words, the monitor/listener parameter specifies the server side of the IP connection, and
the parameters specified within the statistics collectors description determine the client side one.

The monitoring job, in addition to gathering statistics of the processes operating with the cache, also
gathers system information on network interfaces. In order to limit the list of network interfaces used
to gather statistics, it is necessary to specify them in a list in the monitor/network_interfaces
parameter.

 monitor:
 listener: # listener collects
information from different processes about
 # incoming/outgoing traffic
 host: localhost
 port: 1600

 network_interfaces: # list of network interfaces
which is used for getting
 # incoming/outgoing traffic
statistics
 # if list is empty, all
interfaces except "lo" will be used
 -

Load

Load parameters are divided into generic ones, which are specified as fields of the load parameter;
used in offline-loading (load/offline); used in online-loading (load/online);

Generic load parameters:

 #
 # Load jobs parameters
 load:
 ip_binding: # optional, list of local IP-adresses
which could be used
 # to binding while loading
 -

 ignored_clients: # list of CIDRs for source IP addresses

which should be ignored;
 # list could be defined internally into
configuration file as list of CIDRs
 # under key "cidr_list" or into
external files under key "cidr_files";
 # if list is defined externally in
file, each line that file must contain
 # only one CIDR
 cidr_list:
 -
 cidr_files:
 -

 rate_limits: # defines rate limit for data loading
depending on time class;
 # value can be one of following:
 # - "unlimited"
 # - number of bytes which defines
amount of loaded data per second
 offpeak: unlimited
 peak: 1m

 # ... skipping ...

The load/ip_binding parameter specifies the IP address list to be used when loading the data, the
listed addresses are used evenly.

The load/ignored_clients parameter allows to specify the list of CIDR to be ignored, the requests
being sent from these CIDR should not be taken into account when loading data. CIDRs can be
specified both in the configuration file (the load/ignored_clients/cidr_list list), and in the
external files (the load/ignored_clients/cidr_files list).

The load/rate_limits parameter defines the loading data speed limitations based on the time
classes. To set a limit on the speed of loading data at a certain time, you should to create the load /
rate_limits / <time class> parameter which value is used to set the desired limitation.

Offline-load parameters:

 #
 # Load jobs parameters
 load:
 # ... skipping ...
 offline:
 parallel_workers: 1 # optional, number of parallel
loading jobs, default 1
 job_awaiting_time: 10 # awaiting time for job in a queue
in seconds;
 # if after this time no one job is
in the queue,
 # worker finishes its execution

Online-load parameters can be divided into the following logical groups:

Descriptions of IPFIX stream sources
Description of the input IPFIX flow analysis
Description of the requested objects collectors
Description of data loading processes

Descriptions of IPFIX stream sources are specified in the load/online/exporters structure:

 #
 # Load jobs parameters
 load:
 # ... skipping ...

 online:
 exporters: # list of IPFIX exporters
 main:
 queue_size: 1000 # optional, max number of
messages from exporter which is sent to analyzing queue,
 # must be between 1 and
100000, default: 1000

 host: localhost # host name or IP-address
 port: 1500 # listening port
 protocol: udp # one of possible protocols:
UDP or TCP

 information_elements: # list of used
information elements;
 # names are
reserved, values must be in form "PEN/NUM"
 timestamp: "43823/1001" # mandatory,
timestamp of event, must be IPFIX dateTimeSeconds
 host: "43823/1005" # mandatory,
host name, must be IPFIX string
 path: "43823/1006" # mandatory,
path to resource, must be IPFIX string
 login: "43823/1002" # optional,
login, must be IPFIX string
 source_ip4: "43823/1003" # optional,
source IP-address
 destination_ip4: "43823/1004" # optional,
destination IP-address
 referal: "43823/1007" # optional,
referal, must be IPFIX string
 user_agent: "43823/1008" # optional, user
agent, must be IPFIX string
 cookie: "43823/1009" # optional,
cookie, must be IPFIX string

 # ... skipping ...

To create a description of the IPFIX stream source, you should create the
load/online/exporters/<IPFIX-источник>structure according to the example above. You
should pay attention to specifying the following parameters:

load/online/exporters/<IPFIX-источник>/host and
load/online/exporters/<IPFIX-источник>/port - definition of the server socket
parameters (IPFIX stream should be sent to this address);
load/online/exporters/<IPFIX-источник>/protocol - the definition of the protocol
used to send messages;

The input IPFIX flow analysis description is specified in the load/online/analyzing structure:

 #
 # Load jobs parameters
 load:
 # ... skipping ...

 online:
 # ... skipping ...

 analyzing: # the analyzing processes
perform URL rewriting, filtering
 # and binding URLs getting
from exporters to cache's definition
 # each analyzzng process
sends valid URLs to collection queue
 parallel_workers: 1 # optional, number of
parallel analyzing jobs, default 1
 queue_size: 1000 # optional, max number of
messages from each analyzing process
 # which is sent to
collecting queue, must be between 1 and 100000,
 # default: 1000

 # ... skipping ...

When specifying the analyzer parameters, you should focus initially on the
load/online/analyzing/parallel_workers parameter. When there is a large number of
messages from the processes receiving an IPFIX stream, the analyzer processes number should be
increased. The indication to increase the number of analyzer processes is the message about the
message queue overflow in the log files of the processes responsible for receiving the IPFIX stream.

The description of the requested objects collectors is specified in the load/online/collectors
structure:

 #
 # Load jobs parameters
 load:
 # ... skipping ...

 online:

 # ... skipping ...

 collectors: # list of collectors
 default: # the collector is used for
aggregation of identical URLs
 # and distributes them into
time windows
 # each event could hit no
more than 1 window according to event's timestamp
 # the time window is a
period of time which defines interval of time in the past
 # it is possible to have
many time windows, in this case each window is
 # connected to previous one

 slots: 24 # optional, number of
windows, could not be greater than 100, default 24
 window: 3600 # optional, window size in
seconds, could not be less than 60 secs, default 3600

 week_by_4_hours:
 slots: 42
 window: 14400

 # ... skipping ...

The collector of the requested objects is the main factor for deciding whether to start the object
download. Logically, the collector is a collection of counters in the sliding time intervals in the past
from the present. When an object is requested, the counter is incremented in a certain interval, and
as soon as the total value of all object counters reaches the threshold value specified within the cache
description, the object loading is permitted.

In order to create the collector description, you should create the following parameters:

load/online/collectors/<object collector>/slots - number of intervals;
load/online/collectors/<object collector>/window - the size of each interval;

In the example above, two collectors are described: default and week_by_4_hours. The default
collector has 24 1-hour intervals, i.e. allows you to analyze the number of object requests during the
day.

The description of the data loading processes is specified in the load/online/loading structure:

 #
 # Load jobs parameters
 load:
 # ... skipping ...

 online:
 # ... skipping ...

 loading:
 parallel_workers: 1 # optional, number of
parallel loading jobs, default 1
 queue_size: 100 # optional, max number of
messages from collecting process
 # which is sent to loading
queue, must be between "parallel_workers" and 10000,
 # default: 100
 unbuffered_queue_size: 10 # optional, if current queue
size less or equal this value, the messages from
 # collecting process will
put into loading queue immediately. The messages will be buffered
 # and ordered before puting
into loading queue according to URLs' weight;
 # must be between 0 and
"queue_size" - 2 * "parallel_workers", default 2 * "parallel_workers"

 # ... skipping ...

When specifying the load process parameters you should pay attention to the number of parallel
processes. Do not significantly increase the queue size (the load/online/loading/queue_size
parameter), since when using a large value for this parameter at startup, the queue will be populated
with objects that satisfy the load startup conditions, but it is possible that objects that are requested
more frequently will appear during the queue processing.

Scanning

Scanning is an auxiliary job that starts when loading and deleting data from the cache.

 #
 # Scannig jobs parameters
 scan:
 workers: # the scanning processes perform
scan cache directories on demand;
 # each scanning process sends
information about found items to scanning queue
 parallel_workers: 4 # optional, number of parallel
scanning jobs, default 4
 job_queue_size: 5000 # optional, max number of
messages in job queue, must be between 1000 and 10000
 # default: 5000
 result_queue_size: 100000 # optional, max number of
messages from each scanner process
 # which are sent to result
scanning queue, must be between 1000 and 1000000,
 # default: 100000

The functions performed by the scan task include the following:

initial directories scanning when the load process starts or when old objects are removed;

checking the lifetime of object in the cache and removing it, if necessary;
removal of objects on request from the control process;
checking the compliance of the object stored in the cache with its original;

Storage

Storage parameters are specified as the storage_parameters parameter fields. All storage
parameters are divided into the following groups:

storage general characteristics - the storage_parameters/general structure
CACHEs parameters description - the storage_parameters/caches structure

General parameters specify the path to the storage root, as well as the maximum size that can be
allocated to all the objects of the cache:

storage_parameters:
 general:
 path: "/var/cache/ccu/data" # optional, base path for caches,
default: /var/cache/ccu/data;
 max_size: "1T" # optional ("unlimited", 0 or
missed - unlimited),
 # maximum data size for all
caches, possible suffixes are:
 # Kb, Mb, Gb, Tb, Pb or without
trailing "b" just K, M, G, T, P

The parameters of a particular cache are specified as the storage_parameters/caches/<cache
description> structure, for example:

storage_parameters:
 # ... skipping ...

 caches:
 youtube.com:
 is_enabled: yes # optional (default yes), if
value is "no" the cache definition
 # will not be used for loading
data

 # ... skipping ...

specifies the cache description using the youtube.com name.

Cache description

The parameter names will be based on the storage_parameters/caches/<cache
description> parameter when describing cache parameters in this section.

The is_enabled parameter specifies whether objects will be loaded into the cache or not.

Statistics

The cache statistics are specified in the statistics structure:

 statistics:
 group: "youtube.com" # name of statistic's
group
 # all statistics in the
same group is aggregated together
 collector: local # name of statistics
collector

The statistics/group the parameter specifies the group where the cache operations will be taken
account. The statistics/collector parameter specifies statistics collector, which will account for
cache transactions.

Online-loading

For the online-loading, you need to specify the following parameters:

 online:
 collector: "week_by_4_hours" # name of collector which
should be used
 # for online processing
 validating:
 interval: 24h # revalidating interval
for particular cache item;
 # could be used only for
caches with "general" algorithm

The online/collector parameter specifies the collector name of the requested objects. The
online/validating/interval parameter can only be used by the cache with general load
algorithm and specifies the time interval defining how often the cache-stored object will be checked
against its original.

Loading

The following parameters are used to specify the load rules:

 loading:
 algorithm: "youtube.com" # internal algorithm name
 required_weight: 3 # min URL's weight which is
required to start loading, default 3

 urls:
 matching: # list of parameters for URL matching and
rewriting;
 # - the "key" item is used for unique
identification of object;
 # - the "target" item specifies target value for
URL; usually target is used as
 # as additional URL for loading
 # - the "weight" item is used as weight addition,
default 1;
 # all items under "sources" are used as a source
masks;
 # the "key" and "target" can be omitted in this
case
 # the sources URLs will not be rewritten.
 # it is necessary to have at least one URL in
sources.
 # It is possible to use in the key and target's
expression variables from sources;
 # See RE syntax on
https://docs.python.org/2/library/re.html

 - key: '\1'
 weight: 1
 sources:
 - '^www\.youtube\.com/watch\?v=([a-zA-Z0-9_\-]+)'
 - '^www\.youtube\.com/embed/([a-zA-Z0-9_\-]+)'

 ignoring: # list of regular expr. for ignoring urls
 - # default: all matched with matching parameters
URLs will be processed

 loadable_rejecting: # list of regular expr. for rejecting
"real" urls
 # which is obtained according to
particular URL
 # default: all "real" URLs will be
processed
 # See RE syntax on
https://docs.python.org/2/library/re.html

 - "itag=(?!(18|22|140)(?![0-9]))"

The loading/algorithm parameter defines algorithm to be used for object loading. The
following algorithms exist:

youtube.com - to download video files from youtube.com;
rutube.ru - to download video files from rutube.ru;
vk.com - to download video files from vk.com;
general - general algorithm for loading the source URL;

The loading/required_weight parameter specifies the required collector weight of the
requested objects; when the weight is reached, object loading will start;

The loading/urls/matching parameter specifies the rules for original URL
processing/overwriting; This parameter is a list of the elements structure with the following
fields:

key - the object key, which is issential for the loading algorithm, for example, the object
key for the youtube.com algorithm is presented by the video identifier;
weight - the weight to be added when the requested object in the collector will be
accounted;
target - rewritten original URL;
sources - a list of regular expressions for analyzing original URL;

When specifying the mapping rules, you can use references to the elements of the
original URL. So in the example above, the key parameter value is the video id specified
as the 1st group in regular expressions.

The loading/urls/ignoring parameter specifies a list of regular expressions for URLs that
passed the matching stage ('loading/urls/matching') and to be excluded from the load;
The loading/urls/loadable_rejecting parameter specifies a list of regular expressions
for loadable URLs to be excluded from the load; downloadable URLs are the links to real files
obtained when the loading algorithm (loading/algorithm) is executed for original URL, for
example, in order to execute the youtube.com algorithm for the URL specifying the video WEB-
page to be viewed, a list of URLs for video and audio files will be received in all available
formats.

Storage

The following parameters are used to specify the rules for storing objects:

 storage:
 path: "sites/youtube.com" # regard to
"storage_parameters/general/path"
 levels: "2:2" # optional, store files in
subfolders created by leading symbols
 # of md5 sum of file name
 # possible values:
 # "1" - creating
subfolder by the last symbol of md5 sum
 # "2" - creating
subfolder by the last two symbols of md5 sum
 # "1:2" - creating
subfolder by the last symbol of md5 sum
 # and creating
subfolder by 2th and 3th symbols
 # from the end of
md5 sum inside
 # "2:2" - creating
subfolder by the last two symbols of md5 sum
 # and creating
subfolder by 3th and 4th symbols
 # from the end of
md5 sum inside

 max_size: "unlimited" # optional ("unlimited", 0 or
missed - general limit will be used),
 # maximum data size, possible
suffixes are:
 # Kb, Mb, Gb, Tb, Pb or without
trailing "b" just K, M, G, T, P
 expiry_time: "30d" # optional (0 or missed -
unlimited), expiry time,
 # default in seconds (without
suffix)
 # possible suffixes are:
 # m - minutes
 # h - hours
 # d - days

The storage/path parameter specifies the path for storing objects relative to
storage_parameters/general/path parameter value;
The storage/levels parameter specifies the number of additional directories to be created
based on md5-sum of the file name;
The storage/max_size parameter specifies the maximum total size of all objects stored in
the cache. If this restriction is not specified, then the entire repository size restriction will be
used instead;
The storage/expiry_time parameter specifies the lifetime of an object within the cache
from the moment it is loaded;

Constraints

For cache objects, you can set constraints, for example:

 constraints: # optional, specifies
constraints for loaded files
 min_file_size: 128k # optional (default 0), min file
size, possible suffixes are:
 # Kb, Mb, Gb, Tb, Pb or without
trailing "b" just K, M, G, T, P
 max_file_size: "unlimited" # optional (default unlimited),
max file size, possible suffixes are:
 # Kb, Mb, Gb, Tb, Pb or without
trailing "b" just K, M, G, T, P

 # optional, command which should be executed after file loading;
 # if command returns non-zero result, the loaded file will be
assumed as invalid an will be removed;
 # the next variables could be used in the command:
 # {cache_name} - cache name
 # {full_file_name} - fully qualified file name
 post_load_validation: "ft=`file -b {full_file_name}`; echo $ft;
echo $ft | grep -E \"WebM|ISO Media|MPEG\" 2>/dev/null 1>&2"

SSD-Caching

It is possible to get caching of the the most frequently requested storage objects on an SSD, to do so
you should define the following parameters:

#
SSD caching parameters
ssd_caching:
 is_enabled: no # enable or not SSD caching,
by default SSD caching is disabled
 path: "/var/cache/ccu/ssd" # optional, base path for
SSD caching area, default: /var/cache/ccu/ssd
 # NOTES:
 # - to SSD caching you
have to mount SSD on specified path (or create link /var/cache/ccu/ssd to
mount point)
 # - changes this parameter
should be performed in cooperation with changes in web server configuration
 # (it is recomended do
not change this parameter)
 max_size: 128G # maximum data size for
storing on SSD, possible suffixes are:
 # Kb, Mb, Gb, Tb, Pb or
without trailing "b" just K, M, G, T, P
 required_weight: 10 # optional, min URL's weight
which is required to start caching, default 10

 uri_prefixes: # URI prefixes which are
used in HTTP requests to access data
 ssd_cache_requests: "/ssd" # optional, prefix for
requests to SSD cache, default: "/ssd"
 main_storage_requests: "/cache" # optional, prefix for
requests to main storage, default: "/cache"

 frozen_time: 180 # optional, interval of time
in seconds after putting file into cache in which that
 # file cannot be replaced by
another one, default: 3 * collecting window
 # frozen time cannot be less
than collecting window

 collector: # the collector is used for aggregation
of identical requests
 # and distributes them into time windows
 slots: 60 # optional, number of windows, could not
be greater than 120, default 60
 window: 60 # optional, window size in seconds,
could not be less than 60 secs, default 60

 workers: # the worker processes perform scan

cache directories on demand;
 # each process sends information about
found items to result queue
 parallel_workers: 2 # optional, number of parallel jobs,
default 2
 job_queue_size: 5000 # optional, max number of messages in
job queue, must be between 1000 and 10000
 # default: 5000
 result_queue_size: 100000 # optional, max number of messages from
each process
 # which is sent to result queue, must be
between 1000 and 1000000,
 # default: 100000

When setting parameters, you should pay attention to the number of working processes and the
collector parameters.

Initial configuration

When installing ccu the /etc/ccu/ccu.conf.default configuration template file will be created. To get
the proper configuration, you should copy the template file to /etc/ccu/ccu.conf and edit/check the
value of at least the following parameters:

jobs/monitor/network_interfaces
jobs/load/ip_binding
jobs/load/online/exporters/main/host
jobs/load/online/exporters/main/port
jobs/load/online/exporters/main/protocol
storage_parameters/general/max_size

	Содержание
	Cache management utility
	CCU configuration
	YAML format
	Conventions to specify the parameters
	Parameters
	Working directories
	Events
	Logging
	Statistics collection
	Day categories and time classes
	Jobs
	Monitoring
	Load
	Scanning

	Storage
	Cache description
	Statistics
	Online-loading
	Loading
	Storage
	Constraints

	SSD-Caching

	Initial configuration

