
Содержание
20 Роутер 3 ..

Общее описание 3 ..
Внутренняя архитектура роутера 4 ..

Системные требования 4 ...
Задание имен veth-интерфейсов 4 ...
Конфигурирование подсетей TAP 6 ..
Создание veth-интерфейсов 7 ...
Поддержка LAG 9 ...
Multi-path routing (ECMP) 10 ...
Конфигурирование Роут-демона (BIRD, FRR, etc.) 10 ..
Конфигурирование fastDPI 11 ..

Обязательные параметры 11 ...
Дополнительные параметры 13 ..

Отладка Роутера 14 ..
CLI-команды 15 ..

20 Роутер

Это предварительное описание, в дальнейшем по результатам тестов может
быть существенно изменено

Роутер работает только в версии СКАТ для CentOS-8, и только в режиме L2 BRAS

Общее описание

Подробнее о решении: Обзор Роутера

Сам СКАТ не занимаетсмя построением таблицы маршрутизации. Он делегирует эту работу
проверенным специализированным инструментам, в примере использован роут-демон BIRD.
Роут-демон обрабатывает требуемые протоколы маршрутизации (BGP, OSPF и пр.) и по ним
строит общую таблицу маршрутизации, которую загружает в ядро. СКАТ по этой таблице
осуществляет маршрутизацию пакетов.

https://www.youtube.com/watch?v=YgWU35Ay-0k
https://wiki.vasexperts.ru/lib/exe/detail.php?id=dpi%3Adpi_options%3Arouter%3Astart&media=dpi:dpi_options:router:schemata.png
https://wiki.vasexperts.ru/lib/exe/detail.php?id=dpi%3Adpi_options%3Arouter%3Astart&media=dpi:dpi_options:router:schemata.png

Вместо BIRD можно использовать любой другой демон, строящий таблицу
маршрутизации в ядре Линукс, например, FRRouting, QUAGGA, Juniper CRPD и др.
так как СКАТ для вычитывания таблицы маршрутизации использует только
стандартный интерфейс Линукс и поэтому совместим с любым демоном.

В будущих версиях в целях экономии памяти возможно появление опциональных
специализированных API для связи с тем или иным демоном, чтобы миновать
построение kernel route table и взаимодействовать с демоном напрямую, минуя
ядро.

Так как BIRD строит таблицу маршрутизации в ядре ОС, то, во избежание применения этих
правил самим Линукс-сервером, роут-демон BIRD работает в отдельном net namespace (на
схеме это bird netns). Пакеты протоколов маршрутизации поступают на in/out-девайсы СКАТа
в общем трафике. Для каждого in/out-девайса создается veth-пара "теневых" интерфейсов с
предопределенными именами: dpi-интерфейс veth-пары работает как TAP-интерфейс, rib-
интерфейс - как обычный системный интерфейс в netns BIRD'а.

Внутренняя архитектура роутера

Данные из kernel route table вычитываются (rtnetlink) в RIB роутера. RIB - это префиксное
дерево, его удобно модифицировать по событиям изменения (удаления/добавления записей)
route table ядра. Но использовать RIB в маршрутизации нельзя, так как он не поддерживает
многопоточный доступ со стороны рабочих потоков (требуется блокировка, что неприемлемо).
Поэтому в СКАТ RIB живет в потоке роутера и недоступен рабочим потокам.

Рабочие потоки используют FIB. Эта структура заточена на многопоточный поиск (LPM - longest
prefix match), но не предназначена для модификаций (удаления/добавления новых записей).
FIB можно только построить с нуля по RIB и затем использовать для LPM. Поэтому в СКАТ
существуют два FIB - текущая (которая сейчас используется для роутинга рабочими потоками)
и "будущая". СКАТ раз в router_fib_refresh секунд проверяет, не было ли изменений в RIB с
момента построения текущей FIB. Если изменения были, СКАТ строит (в потоке роутера) новую
FIB на месте "будущей", а затем переключает текущую FIB на новую. Тем самым рабочие
потоки увидят все изменения, которые произошли в таблице маршрутизации.

Системные требования

Режим роутера в СКАТ требует довольно много памяти, особенно при BGP full view. Плюс
память требуется демону BIRD, строящему таблицу маршрутизации по BGP, OSPF и пр. Для
режима роутера (особенно для BGP full view) потребуется дополнительно как минимум 4G - 8G
памяти.

Задание имен veth-интерфейсов

В fastdpi.conf описываются все TAP-интерфейсы, связанные с девайсами:

https://frrouting.org/
https://www.quagga.net
https://www.juniper.net/documentation/product/en_US/crpd

Описание одного интерфейса роутера
ВНИМАНИЕ! '{' должен быть на той же строке, что и имя секции router_device!
router_device {
 # Имя девайса из in_dev/out_dev
 device=
 # Имя TAP-интерфейса для девайса (default='dpi' + device)
 #tap=
 # Имя парного TAP-интерфейса в netns для девайса (default='rib' + device)
 #peer=
ВНИМАНИЕ! '}' должен быть на отдельной строке!
}

Например, для такой конфигурации

in_dev=41-00.0
out_dev=41-00.1

где к роутеру подключен только out_dev, описание будет такое:

in_dev=41-00.0
out_dev=41-00.1

router_device {
 # Имя девайса из in_dev/out_dev
 device=41-00.1
 # Имя TAP-интерфейса для девайса (default='dpi' + device)
 tap=tap41
 # Имя парного TAP-интерфейса в netns для девайса (default='rib' + device)
 peer=bgp41
}

Можно не задавать имена tap и peer интерфейсов (в этом случае подразумеваются имена по
умолчанию), но описать router_device нужно:

in_dev=41-00.0
out_dev=41-00.1
 # TAP для out_dev:
router_device {
 device=41-00.1
}

 # TAP для in_dev
router_device {
 device=41-00.0
}

В этом случае предполагаются такие имена TAP-интерфейсов:

для in_dev=41-00.0: со стороны СКАТа dpi41-00.0, со стороны BIRD rib41-00.0
для out_dev=41-00.1: со стороны СКАТа dpi41-00.1, со стороны BIRD rib41-00.1

Конфигурирование подсетей TAP

Для каждого router_device обязательно должно быть указано, какие подсети отводятся на
TAP (фактически, это отведение пакетов протоколов маршрутизации на BIRD). СКАТ будет
выделять из общего трафика на девайсе обращения к этим подсетям и направлять все такие
пакеты на соответствующий TAP-интерфейс.

Подсети задаются параметрами subnet (для IPv4) и subnet6 (для IPv6) в описании
router_device. Каждая подсеть задается отдельным параметром subnet/subnet6. Всего в
описании router_device может быть до 16 разных subnet параметров и до 16 разных
subnet6. Например, такая конфигурация

router_device {
 # Имя девайса из in_dev/out_dev
 device=41-00.1
 # Имя TAP-интерфейса для девайса (default='dpi' + device)
 tap=tap41
 # Имя парного TAP-интерфейса в netns для девайса (default='rib' + device)
 peer=bgp41

 # Какие IPv4-подсети отводим на TAP
 subnet=10.0.2.0/30
 subnet=8.8.8.0/29

 # Какие IPv6-подсети отводим на TAP
 subnet6=2001::1/124
 # link-local адрес интерфейса, с которым взаимодействует bird
 subnet6=fe80::82d:cff:fe5f:9453/128
}

задает две IPv4-подсети для девайса 41-00.1, которые будут отводится на TAP-интерфейс
tap41, и одну IPv6-подсеть плюс link-local адрес интерфейса, с которым взаимодействует bird.

Если используется IPv6, следует учитывать, что в IPv6 большую роль играют link-
local адреса, которые также должны быть указаны в параметрах subnet6

OSPF использует мультикастные адреса 224.0.0.5 и 224.0.0.6, поэтому если на router_device
используется протокол OSPF, эти адреса тоже следует задать в описании router_device:

router_device {
 device=41-00.1
 tap=tap41
 peer=bgp41

 # OSPF multicast
 subnet=224.0.0.5/32
 subnet=224.0.0.6/32
}

В параметре router_device должна быть указана хотя бы одна IPv4 или IPv6-
подсеть

Создание veth-интерфейсов

Все, что описано в данном разделе, - создание veth-интерфейсов, запуск BIRD и
пр. - должно быть задано в скриптах загрузки системы и выполняться до
запуска fastdpi.

Пусть у нас в fastdpi.conf заданы следующие девайсы:

in_dev=41-00.0
out_dev=41-00.1

Предположим, что нам требуется настроить в BIRD протокол BGP для uplink, то есть на девайсе
41-00.1.

Теневые veth-интерфейсы нужно создавать для каждого in/out-девайса, в
трафике которого идут пакеты протоколов маршрутизации, то есть которые
требуют конфигурирования в BIRD. Если девайс не участвует в маршрутизации
(как in_dev=41-00.0 в этом примере), для него не надо создавать veth-пару

Чтобы перенаправить BGP-трафик c 41-00.1 на BIRD, который работает в bird netns, нам
нужно создать veth-пару теневых для 41-00.1 интерфейсов.

Создаем bird netns (имя bird здесь выбрано произвольно, вы можете использовать другое
имя netns), в котором будет работать BIRD:

ip netns add bird

Создаем veth пару:

ip link add dpi41-00.1 type veth peer name rib41-00.1 netns bird

rib-интерфейс должен иметь IP-адрес (и IPv6, если IPv6 поддерживается). Этот адрес будет
адресом BGP-пира для BGP-соседа.

ip netns exec bird ip address add 10.0.0.4/24 broadcast 10.0.0.255 dev
rib41-00.1
ip netns exec bird ip address add 2098::4/124 dev rib41-00.1
включаем ARP на интерфейсе
ip netns exec bird ip link set dev rib41-00.1 arp on

set tx checksum offload off - выключаем расчет контрольной суммы на интерфейсе

замечено, что расчет CRC на интерфейсе может быть некорректным (по крайней мере, на
некоторых сборках ядра CentOS-8)
ip netns exec bird ethtool -K rib41-00.1 tx off

IP-адрес rib-интерфейсов должны отличаться от IP-адреса СКАТ, задаваемого
параметрами bras_arp_ip и bras_ipv6_address. Более того, во избежание
непонятных ситуаций адреса bras_arp_ip и bras_ipv6_address не должны
входить ни в какую подсеть, отводимую на TAP-интерфейсы

dpi-интерфейс не должен иметь ни IPv4, ни IPv6 адреса, так как в СКАТ он используется как
TAP-интерфейс и наличие на нем адресов не требуется (более того, даже может мешать, если
сам интерфейс начнет "излучать" пакеты):

ip link set dev dpi41-00.1 arp off
Disable IPv6 on dpiXXX interfaces (чтобы не было даже link-local адреса)
echo 1>/proc/sys/net/ipv6/conf/dpi41-00.1/disable_ipv6

Наконец, поднимаем все созданные интерфейсы:

ip link set dpi41-00.1 up
ip netns exec bird ip link set lo up
ip netns exec bird ip link set rib41-00.1 up

Не забываем про firewall:

firewall-cmd --zone=internal --add-source=10.0.0.1/24
firewall-cmd --zone=internal --add-rich-rule='rule family=ipv4 source
address=10.0.0.1/24 accept'

Не забывайте, что BIRD должен быть запущен в bird netns:

ip netns exec bird /usr/local/sbin/bird

Состоянием линков veth-интерфейсов управляет СКАТ: если девайс 41-00.1 link
down, то СКАТ переведет в link down veth-интерфейсы этого девайса; как только
линк 41-00.1 поднимется, СКАТ переведет veth-интерфейсы в link up

Как быть с VLAN?

СКАТ пересылает пакеты в rib-интерфейсы "как есть", без всякого
преобразования. Это значит, что в случае наличия VLAN, нужно средствами Linux
создать vlan-интерфейсы на rib-интерфейсе, а уже к этим vlan-интерфейсам
привязать bird

В fastdpi.conf vlan-интерфейсы, созданные на rib-интерфейсе, не должны нигде
фигурировать, - вы должны в качестве tap и peer указать два конца veth-пары.

MTU

СКАТ не выставляет MTU на veth-интерфейсах. При конфигурировании veth-
интерфейсов следует задать MTU штатными средствами Линукса.

Поддержка LAG

В СКАТ 10.1 добавлена поддержка агрегации каналов в роутере.

Для агрегированных каналов пакеты, которые нужно отводить на TAP-интерфейс, могут
придти на любой девайс, входящий в LAG. Чтобы не создавать фактически одинаковые TAP-
интерфейсы для каждого девайса из LAG, роутер учитывает, какие девайсы входят в LAG и для
всех таких девайсов делает отвод трафика указанных подсетей на TAP (к демону BIRD).

Каждый LAG задается отдельной секцией в fastdpi.conf, в которой перечисляются все девайсы,
входящие в LAG:

 # Входные/выходные девайсы, объединенные в LAG
in_dev=01-00.0:02-00.0
out_dev=01-00.1:02-00.1

 # Описываем LAG в сторону inet
lag {
 # Необязательное имя LAG,используется только для вывода в лог
 name=inet
 # Каждый девайс, входящий в LAG, описывается отдельным параметром device
 device=01-00.1
 device=02-00.1
}

 # Описание одного интерфейса роутера
router_device {
 # Имя девайса из out_dev. Только для этого девайса делаем veth-пару TAP-
интерфейсов
 device=01-00.1
 # Имя TAP-интерфейса для девайса (default='dpi' + device)
 tap=tap0
 # Имя парного TAP-интерфейса в netns для девайса (default='rib' + device)
 peer=peer0
 # Подсети, отводимые из общего трафика на TAP-девайс (пример)
 subnet=10.0.10.0/26
 #...прочие подсети...
}

При таком описании отвод трафика на TAP tap0 будет происходить с обоих девайсов 01-00.1
и 02-00.1, заданных в секции lag, в соответствии с правилами (подсетями), заданными для
01-00.1 в router_device.

В секции lag должно быть указано не менее двух девайсов, причем все девайсы должны быть
одного направления (либо все смотрят в inet, либо все смотрят в сторону subs). Один девайс
может входить только в один LAG (или не входить вообще ни в какой). Если роутер работает
как в сторону inet, так и в сторону subs (например, BGP на стороне inet и OSPF внутри сети, в
сторону subs), то описываются две секции lag:

LAG в сторону inet
lag {
 name=inet
 device=01-00.1
 device=02-00.1
}

LAG в сторону subs
lag {
 name=subs
 device=01-00.0
 device=02-00.0
}

и для каждой конфигурируется отдельная секция router_device.

Всего возможно задать не более 10 различных lag-секций.

Секции lag в fastdpi.conf - это холодный параметр, требуется рестарт fastdpi при
изменении описания LAG

Multi-path routing (ECMP)

В СКАТ 10.2 добавлена поддержка multi-path routing (ECMP).

СКАТ делает балансировку трафика (round-robin) на уровне flow по всем маршрутам из multi-
path. Балансировка на уровне flow означает, что конкретный flow будет закреплен за одним из
маршрутов из multi-path и выбранный маршрут не будет изменяться до окончания данного
flow.

Для включения multi-path в СКАТ не требуется никакой настройки. Поддержка ECMP
включается в конфигурационных параметрах демона маршрутизации. Например, в BIRD
поддержка ECMP включается указанием merge paths yes; в протоколе kernel, см.
https://bird.network.cz/?get_doc&v=20&f=bird-6.html#ss6.6.

Конфигурирование Роут-демона (BIRD, FRR, etc.)

Настройки Роут-демона (BIRD, FRR, etc.) и СКАТ должны быть согласованы: роут-демон
должен создавать kernel route table с номером, задаваемым параметром
router_kernel_table.

https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://bird.network.cz/?get_doc&v=20&f=bird-6.html#ss6.6

Поддерживаемые роут-демоны:

BIRD: официальная документация. Поддерживается BIRD версии 2 и выше. Версия 1 не1.
поддерживается.
FRRouting: официальная документация2.
QUAGGA: официальная документация3.
Juniper CRPD: официальная документация4.

Конфигурирование fastDPI

Обязательные параметры

Чтобы включить функционал роутера, в fastdpi.conf необходимо активировать параметр

 # [cold] Включение функционала роутера
 # Булевый параметр:
 # 0, false, off - функционал роутера отключен (default)
 # 1, true, on - функционал роутера включен
 # Не допускает изменения "на лету" через reload
router=1

Далее необходимо указать, в каком netns работает BIRD и номер таблицы маршрутизации
ядра, которую он строит:

 # [cold] Имя net namespace, в котором запущен BIRD
router_netns=bird
 # [cold] Номер таблицы маршрутизации ядра, которую использует fastDPI
router_kernel_table=1

Также обязательно должны быть заданы следующие параметры BRAS, даже если никакой из
режимов BRAS не включен:

 # Виртуальный MAC-адрес СКАТ
bras_arp_mac=00:E0:ED:43:84:42

 # Виртуальный IP-адрес СКАТ
bras_arp_ip=188.227.73.40

 # Если используется IPv6, необходимо задать виртуальные IPv6-адреса:

 # Задает глобальный IPv6 адрес СКАТа
bras_ipv6_address=2098::1

 # Задает IPv6 link-local адрес СКАТа (префикс FE80::/10)
 # Если данный параметр не задан явно, он вычисляется по bras_arp_mac
#bras_ipv6_link_local

https://bird.network.cz/?get_doc&f=bird.html&v=20
https://bird.network.cz/?get_doc&f=bird.html&v=20
http://docs.frrouting.org/en/latest/
http://docs.frrouting.org/en/latest/
https://www.quagga.net/
https://www.quagga.net/
https://www.juniper.net/documentation/product/en_US/crpd
https://www.juniper.net/documentation/product/en_US/crpd

Эти три параметра являются обязательными для включения роутера. Прочие
параметры, перечисленные ниже, не являются обязательными и предназначены
для тонкой настройки роутера в СКАТ.

Анонсы абонентов и NAT pool

Включение анонсирования адресов абонентов производится параметром в fastdpi.conf:

 # [cold] Флаги анонса адресов абонентов
 # Битовая маска
 # Значения:
 # 1 - анонсировать адрес абонента в сторону subs
 # 2 - анонсировать адрес абонента в сторону inet (если у абонента не подключен NAT)
 # 4 - анонсировать NAT-подсети в сторону inet
 # 8 - анонсировать абонентские шлюзы (направление задается флагами 1 и 2)
 # Значение по умолчанию: 0 - ничего никуда не анонсировать
#router_subs_announce=0

 # [hot] Метрика для анонсов адресов абонентов
 # Значение по умолчанию = 32
#router_subs_metrics=32

Подсети белых адресов NAT анонсируются только в сторону inet при старте СКАТа и при
добавлении/удалении/изменении NAT-профилей.

Адреса абонентов могут анонсироваться как в сторону inet, так и в сторону subs. Но если IP
адрес абонента входит в диапазон приватных адресов и на него назначена 11 услуга, т.е.
натится, адрес абонента не анонсируется в сторону inet (так что нужно быть осмотрительными
при определении дипазонов приватных адресов). Анонс производится в таблицу
маршрутизации BIRD для всех TAP-девайсов разрешенного направления, далее BIRD
подхватывает изменения и анонсирует их по нужным протоколам в соответствии со своей
конфигурацией.

Дополнительные параметры

Максимальное число маршрутов задается параметрами:

 # [cold] Максимальное число маршрутов в IPv4 route table
 # По умолчанию = 1000000
#router_max_ip4_route_count=1000000

 # [cold] Максимальное число маршрутов в IPv6 route table
 # По умолчанию = 200000
#router_max_ip6_route_count=200000

СКАТ при старте в режиме роутера преаллоцирует память для внутренних route table в
соотвествии с этими параметрами. Советуем устанавливать эти опции (если необходимо) с
запасом в 20-30%, чтобы в процессе работы роутера гарантированно хватило
преаллоцированной памяти.

Рабочая таблица маршрутизации (FIB) СКАТ обновляется раз в router_fib_refresh секунд:

 # [hot] Период обновления FIB, секунд
 # По умолчанию - раз в 15 секунд
#router_fib_refresh=15

https://wiki.vasexperts.ru/doku.php?id=dpi:dpi_options:opt_cgnat:%D1%81gnat_settings:start#%D0%B4%D0%BE%D0%BF%D0%BE%D0%BB%D0%BD%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%BD%D0%B0%D1%81%D1%82%D1%80%D0%BE%D0%B9%D0%BA%D0%B8
https://wiki.vasexperts.ru/doku.php?id=dpi:dpi_options:opt_cgnat:%D1%81gnat_settings:start#%D0%B4%D0%BE%D0%BF%D0%BE%D0%BB%D0%BD%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%BD%D0%B0%D1%81%D1%82%D1%80%D0%BE%D0%B9%D0%BA%D0%B8

Устанавливать данный параметр слишком маленьким (меньше 5 секунд) особого смысла нет.

Максимальный размер neighbor cache (ARP cache) и тайм-аут обновления записей этого кеша
задается параметрами:

 # [cold] Max размер ARP cache (neighbor сache для IPv6)
 # По умолчанию - 1024, max = 32K
#router_arp_cache_size=1024

СКАТ содержит отдельные neighbor-кеши для IPv4 и IPv6, каждый размером
router_arp_cache_size.

СКАТ сам не посылает ARP-запросы для устаревших записей кеша. Вместо этого он полагается
на обновление кеша со стороны ядра Линукса: СКАТ мониторит ARP-ответы, приходящие на
адрес подсети TAP-интерфейсов, и в соотвествии с этими ответами обновляет свой ARP-кеш. То
же самое относится и к IPv6 (мониторинг ICMPv6 neighbor discovery).

Роутер работает в отдельном потоке на отдельном ядре CPU. При старте СКАТ задает
параметры этого потока по умолчанию, которые могут быть изменены параметрами:

 # [cold] Добавление к приоритету служебного потока роутера (повышение
приоритета)
#router_sched_add_prio=0

 # [cold] Ядро привязки потока роутера, -1 - автоопределение
#router_bind_core=-1

Изменять эти параметры надо только в крайнем случае, лучше дать СКАТу самому определить
ядро и приоритет. Например, явное указание ядра для роутера router_bind_core может
пригодится в случае, если ядер не хватает; тогда можно явно привязать роутер к ядру, к
которому привязан какой-то другой служебный поток (ajb, ctl).

Ни в коем случае не привязывайте роутер к ядру рабочего потока или
диспетчера!

Отладка Роутера

Роутер СКАТа в целях отладки может записывать в pcap трафик с BIRD:

 # [hot] Запись pcap с TAP-интерфейсов роутера
 # Note: записывать можно и утилитой tcpdump, указав имя TAP-интерфейса.
 # Но проблема в том, что tcpdump не работает с интерфейсами в режиме DOWN,
 # то есть tcpdump'ом невозможно записать трафик при переходе интерфейса
 # из состояния DOWN в состояние UP.
 # Имена TAP-интерфейсов через ';' или 'all' (записывать со всех)
 # Для каждого TAP-интерфейса создается отдельный pcap-файл с именем
 # tap_<имя_интерфейса>_xxx.pcap в каталог, задаваемый параметром

ajb_udpi_path (по умолчанию /var/dump/dpi)
#router_tap_pcap=all|список TAP-интерфейсов через ';'

 # [hot] Направление пакетов для записи pcap с TAP-интерфейсов
 # Значения:
 # 1 - TAP -> вовне (пакеты от TAP-интерфейса)
 # 2 - извне -> TAP (пакеты на TAP-интерфейс)
 # 0 или 3 - все направления
#router_tap_pcap_dir=0
 # [hot] Интервал ротации TAP pcap, секунд
 # 0 - берется из параметра ajb_udpi_ftimeout (ajb_udpi_ftimeout задается в
минутах)
#router_tap_pcap_rotate=0

Также можно включить запись в pcap обмена данными с ядром (rtnetlink):

 # [hot] Записывать или нет rtnetlink messages в pcap
 # 0 - не записывать
 # 1 - записывать
 # Префикс pcap-файлов = "rtnl"
#router_rtnl_pcap=0

Кроме того, если включена запись пакетов в pcap по маске адреса (ajb_save_ip), то роутер
будет записывать в pcap также результирующий пакет после применения маршрутизации. То
есть в pcap окажутся две записи для одного входящего пакета: первая запись - исходный
пакет, вторая - отправленный пакет.

CLI-команды

СКАТ имеет набор CLI-команд по просмотру текущего состояния роутера. Полный список
команд см.

fdpi_cli help router

Команды дампа RIB и FIB выводят очень много данных, так как эти структуры
могут содержать сотни тысяч записей в случае BGP full view. Поэтому при вызове
этих команд советуем перенаправлять вывод в файл

Также не забывайте, что построением таблицы маршрутизации по BGP, OSPF и пр. занимается
BIRD, у которого есть собственная утилита командной строки birdc и собственный
конфигурационный файл с развитой системой команд по фильтрации, заданию static-
маршрутов и пр.

Кроме того, стандартная утилита Линукса ip дает полный контроль над kernel route table. При
использовании утилиты ip не забывайте указывать правильный netns (router_netns) и номер
таблицы маршрутизации (router_kernel_table).

	Содержание
	20 Роутер
	Общее описание
	Внутренняя архитектура роутера

	Системные требования
	Задание имен veth-интерфейсов
	Конфигурирование подсетей TAP
	Создание veth-интерфейсов
	Поддержка LAG
	Multi-path routing (ECMP)
	Конфигурирование Роут-демона (BIRD, FRR, etc.)
	Конфигурирование fastDPI
	Обязательные параметры
	Анонсы абонентов и NAT pool

	Дополнительные параметры

	Отладка Роутера
	CLI-команды

